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Consider the problem of a society choosing its constitution. Naturally, the current 
rewards from adopting a specific constitution will influence this decision. Yet, as 
long as the members of the society are forward-looking and patient, the future impli-
cations of the constitution may be even more important. For example, a constitution 
that encourages economic activity and benefits the majority of the population may 
nonetheless lead to future instability or leave room for a minority to seize politi-
cal control. If so, the society—or the majority of its members—may rationally shy 
away from adopting such a constitution. Many problems in political economy, club 
theory, coalition formation, organizational economics, and industrial organization 
have a structure resembling this example of constitutional choice.

We develop a tractable framework for the analysis of dynamic collective deci-
sions. Consider a society consisting of a finite number of infinitely lived individuals. 
It starts in a particular state. A state in our framework represents both economic 
and political arrangements. In particular, it determines stage payoffs (for example, 
by shaping economic allocations) and also how the society can determine its future 
states (e.g., which subsets of individuals can change the economic allocations and 
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political rules; see Examples 1 and 2). Our focus is on dynamic equilibria when 
individuals are sufficiently forward-looking. Under natural acyclicity assumptions 
that rule out Condorcet-type cycles, we prove the existence and characterize the 
structure of (dynamically) stable states. An equilibrium is represented by a mapping 
ϕ which designates the dynamically stable state ϕ(​s​0​) as a function of the initial state ​
s​0​. We show that the set of dynamically stable states is largely independent of the 
details of agenda setting and voting protocols.

Although our main focus is the noncooperative analysis of the environment out-
lined above, it is both convenient and instructive to start with an axiomatic char-
acterization of stable states. This characterization relies on the observation that 
sufficiently forward-looking individuals do not wish to support change toward a 
state (constitution) that might ultimately lead to another, less preferred state (our 
stability axiom). We also introduce two other natural axioms ensuring that individu-
als do not support changes that give them lower utility. We characterize the set of 
mappings, Φ, that are consistent with these three axioms recursively and provide 
conditions under which there exists a unique member of Φ (Theorem 1). We show 
that even when Φ is not a singleton, the sets of stable states defined by any two ​ϕ​1​, ​
ϕ​2​ ∈ Φ, are identical.

Our main results are given in Theorem 2. Under the assumptions that (i) agents 
have a discount factor sufficiently close to 1, and (ii) there are (small) transaction 
costs from changing states, the equilibria of our dynamic game for any agenda-
setting and voting protocol corresponds to some ϕ ∈ Φ. Conversely, for any ϕ ∈ Φ, 
there exists a protocol such that the resulting noncooperative equilibrium is repre-
sented by ϕ.

Both high discount factors and transaction costs are assumed to enable a sharp 
characterization of the structure of stable states, though they are also reasonable 
in many relevant applications.1 The high discount factor assumption is motivated 
by situations in which a new state, involving a different configuration of political 
power, can be changed immediately by those who have power (which is itself a con-
sequence of lack of commitment in political decisions, discussed below). We also 
believe that most major changes in political rules and organizational forms involve 
transaction costs.2 We should add, however, that the payoff implications of these 
transaction costs are small in our setup precisely because the discount factor is high 
(and thus, in equilibrium, discounted payoffs are approximately equal to what they 
would have been without the transaction cost; see below).

At the center of our approach is the natural lack of commitment in dynamic 
decision-making problems—those that gain additional decision-making power as 

1 These assumptions ensure that agents compare different paths putting a sufficiently large weight on payoffs in 
the final state that will ultimately emerge and persist rather than on payoffs in transitory states along these paths. 
Since we impose relatively few restrictions on protocols and preferences (in particular, no “cardinal” comparisons 
between payoffs in different states), cycles in the dynamic game cannot be ruled out without sufficiently forward-
looking agents and without transaction costs (see Examples 3, 4, and 5 in the online Appendix).

2 One example illustrating the plausibility of transaction costs in the context of political change comes from 
the emergence of democracy, studied, among others, by Acemoglu and Robinson (2000, 2006) and Lizzeri and 
Persico (2004). These works assume that while commitment to policies is not feasible, political institutions, such 
as democracy or voting rights, cannot be immediately reversed or totally disregarded once introduced (otherwise, 
democracy would have no value over and above a promise to implement certain policies). The most plausible reason 
for this is that there are transaction costs in changing political institutions (e.g., once given, voting rights cannot be 
taken back without incurring some costs).
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a result of a reform cannot commit to refraining from further choices that would 
hurt the initial set of decision makers. This lack of commitment leads to two intui-
tive results. First, a particular social arrangement (constitution, coalition, or club) 
is made stable not by the absence of a powerful set of players that prefer another 
alternative, but because of the absence of an alternative stable arrangement that is 
preferred by a sufficiently powerful constituency. To understand why certain social 
arrangements are stable, we must thus study the instabilities that changes away 
from these arrangements would unleash. Second, dynamically stable states can be 
inefficient—i.e., they may be Pareto dominated by the payoffs in another state (see 
Theorem 3).

Our final result, Theorem 4, provides sufficient conditions for the acyclicity 
assumptions (used in Theorems 1 and 2) to hold when states belong to an ordered 
set (e.g., a subset of 핉). In particular, it shows that these results apply when (static) 
preferences satisfy a single-crossing property or are single-peaked (and some mild 
assumptions on the structure of winning coalitions are satisfied). These properties 
are satisfied in the majority of models of static or dynamic political economy, as 
illustrated by the various applications discussed in the online Appendix. Theorem 
4 shows that our main results are both applicable in a wide variety of environments 
and typically easy to apply; also, Theorems 1 and 2 apply in a range of situations in 
which states do not belong to an ordered set.

Below, we provide two simple examples that illustrate main insights of our theo-
retical model. We start with a classic example that illustrates the tension between 
payoffs and political power that is present in more general form throughout our anal-
ysis. We then provide a more substantive example, to which we return in Section V.

Example 1: Consider a society that consists of two social groups, E, the elite, and 
M, the middle class. There are three states with different payoffs and distribution of 
political power: (1) absolutist monarchy a, in which E rules, with no political rights 
for M; (2) constitutional monarchy c, in which M has greater security and is willing 
to invest; (3) democracy d, where M becomes more influential and privileges of E 
disappear. Stage payoffs satisfy

	​ w​ E​ (d )  < ​ w​ E​ (a)  < ​ w​ E​ (c) , and ​w​ M​ (a)  < ​ w​ M​ (c)  < ​ w​ M​ (d ) .

This implies that E has a higher payoff under constitutional monarchy than under 
absolutist monarchy (e.g., because greater investments by M increase tax revenues). 
On the other hand, M prefers democracy to constitutional monarchy and is least 
well-off under absolutist monarchy. Both parties discount the stage payoffs at rate 
β ∈ (0, 1). States a, c, and d not only determine payoffs, but also specify decision 
rules. In absolutist monarchy, E decides which regime will prevail tomorrow; in 
both c and d, M decides next period’s regime.

Using our notation, d is a dynamically stable state, and ϕ(d ) = d. In contrast, c 
is not a dynamically stable state, since starting from c, there will be a transition to d 
and thus, ϕ(c) = d. Therefore, if, starting in state a, E chooses a transition to c, this 
will lead to d in the following period, and thus give E a discounted payoff of

	​ U​ E​ (reform)  = ​ w​ E ​(c)  +  β ​ ​w​ E​ (d ) _ 
1  −  β ​ .
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If E decides to stay in a forever, its payoff is ​U​ E​ (no reform) = ​w​ E​ (a)/(1 − β). 
If β is sufficiently small, then ​U​ E​ (no reform) < ​U​ E​ (reform), and reform takes 
place. When players are sufficiently forward-looking, however (β is large), then 
​U​ E​ (no reform) > ​U​ E​ (reform). In this case, ϕ(a) = a. This example illustrates both 
of our main results. First, state a is made stable by the instability of another state, 
c, which is preferred by those who are powerful in a. Second, both E and M would 
be strictly better off in c than in a, so the stable state starting from a is Pareto ineffi-
cient. It also illustrates that the set of stable states is larger when players are forward-
looking (when β is small, only d is stable; when β is large, both a and d are stable).

Example 2: Consider the choice of how inclusive society should be towards differ-
ent political and social views. A central issue facing most countries with significant 
Muslim populations is what types of political, social, and economic rights to give 
to religious and secular groups. At one end, countries such as Saudi Arabia and Iran 
deprive secular groups of all kinds of social and legal rights. At the other end, Turkey, 
Syria, Algeria, and several European countries with Muslim minorities have at times 
restricted participation of religious individuals in political and social life. Both types 
of bans appear to be motivated, at least in part, by dynamic considerations. Saudi 
Arabia and Iran are concerned that giving rights to nonreligious groups would weaken 
their regimes, while in Turkey bans on Islamist practices and parties have been moti-
vated by the so-called “slippery slope” argument that giving rights to religious groups 
would ultimately reduce the rights of secular groups.3 Some commentators interpret 
the developments in Turkey following greater inclusiveness toward religious groups 
and parties as supporting the predictions of this slippery slope argument.

To capture these issues in the simplest possible way, consider a society consisting 
of N individuals ranked in ascending order of religiosity. A state s consists of the set 
of individuals Z who currently have the right to political participation and a policy 
ρ that determines tolerance to secularism and religiosity. Individuals receive utility 
from their income and from policy ρ. Suppose that the larger is the set of individuals 
with the right to political participation, the greater are net incomes (e.g., because 
the society functions more cooperatively or individuals with rights feel more secure 
and undertake greater investments or are less likely to rebel). We fix a political rule, 
e.g., majority or supermajority rule, that determines who can choose both ρ and the 
set of individuals who will have the right to political participation in the next period.

This is a highly complex and, in our view, interesting social situation. It captures 
the “slippery slope” argument that giving rights to previously excluded religious 
individuals has short-run economic benefits but could later deprive secular individu-
als of their political rights. Moreover, both the high discount factor and transaction 
costs appear plausible in this context.4 In Section V, we apply our general results to 
the study of this environment.

3 On “slippery slope” arguments, see Schauer (1985), and on the conflict between religious and secular groups, 
see Rabasa and Larrabee (2008) and Roy (2007).

4 For example, in Turkey the first religious local administration in Istanbul quickly moved to restrict the ability 
of certain restaurants to serve alcohol (though ultimately the most extreme measures were not successful), which is 
consistent with frequent choices of actions and thus high discount factors. Furthermore, even minor constitutional 
changes led to significant conflict and gridlocks, with potential economic and social costs, which is consistent with 
significant transaction costs.
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This example also enables us to investigate the question: can we change the con-
stitution so as to give the right to political participation while at the same time ban 
certain policies and certain future constitutional changes? This issue can be analyzed 
within our framework by introducing constitutions that require unanimity for certain 
types of changes (see also Barberà and Jackson 2004). Such constitutions guarantee 
Pareto efficiency. Our analysis, however, highlights the reasons why constitutions that 
stipulate such unanimity rules may not be credible; e.g., when a certain supermajority 
has sufficient de facto political power to challenge the unanimity clause.

Roberts (1999) and Barberà, Maschler, and Shalev (2001) can be viewed as 
major precursors to our paper. Roberts (1999) studies dynamic voting in clubs 
in a society with N individuals, where voting is by majority rule, individuals are 
ordered according to “single-crossing” preferences, and only clubs of the form 
{1, 2, … , k} for different values of k are allowed. Barberà, Maschler, and Shalev 
(2001) study a dynamic game of club formation in which any member of the club 
can admit a new agent unilaterally.5 Lagunoff (2009), who constructs a general 
model of political reform and relates reform to the time inconsistency of induced 
social rules, is another precursor. The analyses of franchise extension in Acemoglu 
and Robinson (2000, 2006) and Lizzeri and Persico (2004), and the model of con-
stitutional stability in Barberà and Jackson (2004), are also related and can be cast 
as applications of our general framework.

Two other closely related papers are Chwe (1994) and Gomes and Jehiel (2005). 
Chwe provides a model where payoffs are determined by states and transitions from 
one state to another are governed by exogenous rules to analyze the relationship 
between two distinct notions from cooperative game theory, consistent and stable 
sets. In Chwe’s setup, however, neither a noncooperative analysis nor character-
ization results is possible.6 Gomes and Jehiel study a related environment with 
side payments. They show that a player may sacrifice his instantaneous payoff to 
improve his bargaining position for the future, and that the equilibrium may be inef-
ficient when the discount factor is small. In contrast, in our game Pareto dominated 
outcomes are not only possible in general, but may emerge as unique equilibria 
and are more likely when discount factors are close to 1. We also provide a full set 
of characterization (and uniqueness) results, which are not present in Gomes and 
Jehiel (and in fact, with side payments, we suspect that such results are not pos-
sible). Finally, in our paper a dynamically stable state depends on the initial state, 
while in Gomes and Jehiel, as the discount factor tends to 1, there is “ergodicity” 
(i.e., the ultimate distribution of states does not depend on the initial state).

Finally, our work is also related to the literatures on noncooperative coalition forma-
tion and club theory.7 An important difference between our approach and the previous 
literature on coalition formation is that, motivated by political settings, we assume that 
the majority (or supermajority) of the members of the society can impose their will on 

5 Barberà, Sonnenschein, and Zhou (1991) study a model of voting by quotas, so that a club admits a new mem-
ber if sufficiently many current members (more than the quota) vote in favor. This implies that there may be many 
outcomes of voting at a given voting stage, while our assumptions impose that, at each voting stage, there is always 
a unique status quo and a unique alternative.

6 The link between Chwe’s consistent sets and our dynamically stable states is discussed in the online Appendix.
7 On noncooperative coalition formation, see, e.g., Mariotti (1997); Ray and Vohra (1997, 1999); Seidmann and 

Winter (1998); and Konishi and Ray (2003). On club theory, see Ellickson et al. (1999) and Scotchmer (2002).
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those players who are not a part of the majority. This contrasts with the positive exter-
nalities and free-rider problems studied by the previous literature. In addition, most 
of these works assume the possibility of binding commitments (Ray and Vohra 1997, 
1999), while we suppose that players have no commitment power.8

The rest of the paper is organized as follows. Section I introduces the general 
environment. Section II presents our axiomatic analysis. In Section III, we prove 
the existence of a (pure-strategy) Markov perfect equilibrium of the dynamic game 
for any agenda setting and voting protocol and establish the equivalence between 
these equilibria and the axiomatic characterization in Section II. Section IV applies 
our results when states belong to an ordered set, while Section V uses our results to 
study the dynamics of political rights discussed in Example 2. Section VI concludes. 
Appendix A contains main proofs; additional proofs, applications, and examples are 
presented in the online Appendix.

I.  Environment

There is a finite set of players . Time is discrete and infinite, indexed by t (t ≥ 1). 
There is a finite set of states which we denote by . Throughout the paper, | X | 
denotes the number of elements of set X, so |  | and |  | denote the number of indi-
viduals and states, respectively. States represent both different institutions affecting 
players’ payoffs, and the distribution of political power and the procedures for deci-
sion making (e.g., sizes and identities of ruling coalitions, the degree of superma-
jority, or the weights or powers of different agents). Although our game is one of 
nontransferable utility, a limited amount of transfers can be incorporated by allow-
ing multiple (but still a finite number of) states that have the same procedure for 
decision making, but different payoffs across players.

The initial state is denoted by ​s​0​ ∈ . This state may be a part of the descrip-
tion of the game or chosen by Nature from  at random. For any t ≥ 1, the state ​
s​t​ ∈  is determined endogenously. A nonempty set X ⊂  is called a coalition, 
and we denote the set of coalitions by . Each state s ∈  is characterized by a pair 
(​{​w​ i​ (s)}​i∈​ , ​​s​). Here, for each state s ∈ , ​w​ i​ (s) is a (strictly) positive stage payoff 
assigned to individual i ∈ . Political institutions in state s are described by the set 
of winning coalitions in state s, ​​s​ , a (possibly empty) subset of . This allows us to 
summarize different political procedures, such as weighted majority or supermajor-
ity rules, in an economical way. For example, if in state s a majority is required for 
decision making, ​​s​ includes all subsets of  that form a majority; if in state s indi-
vidual i is a dictator, ​​s​ contains all coalitions that include i.9 Since ​​s​ is a function 
of the state, the procedure for decision making can vary across states.10

8 Other related works include Burkart and Wallner (2000), who develop an incomplete contracts theory of club 
enlargement; Jehiel and Scotchmer (2001), who show that the requirement of a majority consent for admission to 
a jurisdiction may be no more restrictive than an unrestricted right to migrate; Alesina, Angeloni, and Etro (2005), 
who study the problem of EU enlargement; and Bordignon and Brusco (2003), who study the role of “enhanced 
cooperation agreements” in EU enlargement.

9 Political rules summarized by the ​​s​ s do not specify certain institutional details, such as who makes proposals, 
how voting takes place, and so on. These are specified by the agenda-setting and voting protocols of our dynamic 
game. We will show that these only have a limited effect on equilibrium outcomes, justifying our focus on ​​s​ as a 
representation of “political rules.”

10 Our environment allows for the case where some states, say s and s′, provide the same payoffs for all players 
but have different sets of winning coalitions.
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Throughout the paper, we maintain the following assumption.

Assumption 1 (Winning Coalitions): For any state s ∈ , ​​s​ ⊂  satisfies

	 (i ) 	If X, Y ∈ , X ⊂ Y, and X ∈ ​​s​ then Y ∈ ​​s​ .

	 (ii ) 	If X, Y ∈ ​​s​ , then X ∩ Y ≠ ∅.

Part (i) simply states that if some coalition X is winning in state s, then increasing 
the size of the coalition will not reverse this. Part (ii) rules out the possibility that 
two disjoint coalitions are winning in the same state. If ​​ s​ = ∅, state s is exog-
enously stable. None of our existence or characterization results depend on whether 
there is an exogenously stable state.

We introduce the following binary relations on . For x, y ∈ , we write

(1)	 x  ∼  y  ⇔  ∀ i  ∈    : ​ w​ i​ (x)  = ​ w​ i​ ( y).

In this case we call states x and y payoff-equivalent, or simply equivalent. More 
important for our purposes is the binary relation ​⪰​ z​ . For any z ∈ , ​⪰​ z​ is defined by

(2)	 y ​ ⪰​ z​  x  ⇔  { i  ∈    : ​ w​ i​ ( y)  ≥ ​ w​ i​ (x)}  ∈ ​ ​ z​ .

Intuitively, y ​⪰​ z​ x means that there exists a coalition of players that is winning (in 
z) with each of its members weakly preferring y to x. Note three important fea-
tures about ​⪰​ z​ . First, it contains information about stage payoffs only. In particular, ​
w​ i ​ ( y) ≥ ​w​ i​ (x) does not mean that individual i prefers a switch to state y rather than 
x. Whether or not he does so depends on the continuation payoffs following such a 
switch. Second, the relation ​⪰​ z​ does not presume any type of coordination or col-
lective decision making among the members of the coalition in question. It simply 
records the existence of such a coalition. Third, the relation ​⪰​ z​ is conditioned on z 
since whether the coalition of players weakly preferring y to x is winning depends 
on the set of winning coalitions, which is state dependent. With a slight abuse of 
terminology, if equation (2) holds, we say that y is weakly preferred to x in z. In light 
of the preceding comments, this neither means that all individuals prefer y to x, nor 
that there will necessarily be a transition from state x to y—it simply designates that 
there exists a winning coalition of players, each obtaining a greater stage payoff in 
y than in x. Relation ​≻​ z​ is defined similarly by

(3)	 y ​ ≻​ z​  x  ⇔  { i  ∈    : ​ w​ i​ ( y)  > ​ w​ i​ (x)}  ∈ ​ ​ z​ .

If (3) holds, we say that y is strictly preferred to x in z.11

11 Relation ∼ defines equivalence classes; if x ∼ y and y ∼ z, then x ∼ z. In contrast, the binary relations ​⪰​ z​ and ​
≻​z​ need not even be transitive. Nevertheless, for any x, z ∈ , we have x ​⊁​ z​ x, and whenever ​​z​ is nonempty, we 
also have x ​⪰​ z​ x. From Assumption 1 we have that for any x, y, z ∈ , y ​≻​z​ x implies x ​⊁​ z​ y, and similarly y ​⪰​ z​ x 
implies x ​⊁​z​ y.
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The next assumption puts some joint restrictions on payoff functions and winning 
coalitions.

Assumption 2 (Preferences): Payoffs ​{​w​ i​ (s)}​i∈, s∈​ satisfy the following 
properties:

	 (i) 	For any sequence of states ​s​1​, ​s​2​, … , ​s​k​ in ,

	​ s​j+1​ ​ ≻​​s​j​​ ​ s​j​  for all 1  ≤  j  ≤  k  −  1  ⇒ ​ s​1​ ​ ⊁​​s​k​​ ​ s​k​ .

	 (ii) 	For any sequence of states s, ​s​1​, … , ​s​k​ in S with ​s​j​ ​≻​s​ s for 1 ≤ j ≤ k and ​s​j​ ≁ ​s​l​ 
for 1 ≤ j < l ≤ k,

	​ s​j+1​ ​ ⪰​ s​ ​ s​j​  for all 1  ≤  j  ≤  k  −  1  ⇒ ​ s​1​ ​ ⊁​ s​ ​ s​k​ .

Moreover, if for x, y, s ∈ S we have x ​≻​s​ s and y ​≻​s​ x, then y ​≻​s​ s.

Assumption 2 plays a major role in our analysis and ensures “acyclicity” (but 
is weaker than “transitivity”). Part (i) rules out cycles of the form y ​≻​x​ x, z ​≻​y​ y, 
x ​≻​z​ z—that is, a cycle such that in each state, a winning coalition of players strictly 
prefers the next state. Part (ii) rules out cycles of the form y ​⪰​ s​ x, x ​⪰​ s​ z, z ​⪰​ s​ y 
(unless the states x, y, and z are payoff-equivalent). As such, it also rules out any 
cycles of the form y ​≻​s​ x, z ​≻​s​ y, x ​≻​s​ z.12 It also imposes an additional requirement 
that may be interpreted as “partial transitivity.”13

Although Assumptions 1 and 2 rule out several interesting environments, they are 
natural given our interest in obtaining general characterization results. More impor-
tantly, they are satisfied in most dynamic political economy models (see Theorem 4 
and applications discussed in the online Appendix). In addition to Assumptions 1 
and 2, we obtain additional uniqueness results by imposing the following (stronger) 
requirement.

Assumption 3 (Comparability): For x, y, s ∈  such that x ​≻​s​ s, y ​≻​s​ s, and 
x ≁ y, either y ​≻​s​ x or x ​≻​s​ y.

Assumption 3 means that if two states x and y are strictly preferred to s (in s), and 
they are not equivalent, then x and y are ​≻​s​ -comparable. This assumption is not nec-
essary for our main results but is sufficient to guarantee uniqueness of equilibrium.

II.  Axiomatic Characterization

Before specifying the details of agenda-setting and voting protocols, we pro-
vide an abstract characterization of stable states. This axiomatic analysis has two 

12 Neither part of Assumption 2 is implied by the other. Examples 6 and 7 in the online Appendix illustrate the 
types of cycles that can arise when either 2(i) or 2(ii) fails.

13 Transitivity would require that for any s, x, y and z, y ​≻​s​ x, x ​≻​s​ z implies y ​≻​s​ z. Instead, our condition imposes 
this only when z = s.
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purposes. First, it illustrates that the key economic forces that arise in the context 
of dynamic collective decision making are largely independent of the details of 
agenda-setting and voting protocols. Second, the results in this section are a prepa-
ration for the characterization of the equilibrium of the dynamic game introduced 
in the next section. In particular, our main result, Theorem 2, will make use of this 
axiomatic characterization.

The key economic insight enabling an axiomatic characterization is that with suf-
ficiently forward-looking behavior, an individual should not wish to transit to a 
state that will ultimately lead to another state that gives her lower utility. This basic 
insight enables a tight characterization of (axiomatically) stable states.

More formally, our axiomatic characterization determines a set of mappings Φ 
such that for any ϕ ∈ Φ, ϕ  :   →  assigns an axiomatically stable state ​s​∞​ ∈  to 
each initial state ​s​0​ ∈ . We impose the following three natural axioms on ϕ.

Axiom 1 (Desirability): If x, y ∈  are such that y = ϕ(x), then either y = x or 
y ​≻​x​ x.

Axiom 2 (Stability): If x, y ∈  are such that y = ϕ(x), then y = ϕ(y).

Axiom 3 (Rationality): If x, y, z ∈  are such that z ​≻​x​ x, z = ϕ(z), and z ​≻​x​ y, then 
y ≠ ϕ(x).

All three axioms are natural in light of what we have discussed above. Axiom 1 
requires that the society should not permanently move from state x to another state 
y unless there is a winning coalition that supports this transition. Axiom 2 encapsu-
lates the stability notion discussed above; if some state is not dynamically stable, it 
cannot be the ultimate stable state for any initial state. Axiom 3 imposes the reason-
able requirement that if there exists a stable state z preferred to both x and y by win-
ning coalitions in state x, then ϕ should not pick y in x.14 Note that while all three 
axioms refer to properties of ϕ, they are closely related to underlying individual 
preferences that ϕ aggregates.

We next define the set Φ formally and state the relationship between axiomatically 
stable states and Φ.

Definition 1 (Axiomatically Stable States): Let Φ ≡ {ϕ  :   → : ϕ satisfies 
Axioms 1–3}. A state s ∈  is (axiomatically) stable if ϕ(s) = s for some ϕ ∈ Φ. 
The set of stable states ( fixed points) for mapping ϕ ∈ Φ is ​​ ϕ​ = {s ∈ : ϕ(s) = s} 
and the set of all stable states is  = {s ∈ : ϕ(s) = s for some ϕ ∈ Φ}.

The next theorem establishes the existence of stable states and paves the way for 
Theorem 2, which establishes the equivalence between equilibria of the dynamic 

14 Assumption 2(ii) guarantees that if y ​≻​x​ x and z ​≻​x​ y, then z ​≻​x​ x. Thus, if Axiom 1 is satisfied, then the 
requirement z ​≻​x​ x may be dropped in Axiom 3.
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game (defined in Section III below) and stable sets of mappings ϕ ∈ Φ. A proof of 
Theorem 1 is provided in Appendix A.15

Theorem 1 (Axiomatic Characterization of Stable States): Suppose Assumptions 1 
and 2 hold. Then

	 (i) 	The set Φ is nonempty. That is, there exists a mapping ϕ satisfying Axioms 1–3.

	 (ii) 	Any ϕ ∈ Φ can be recursively constructed as follows. Order the states as 
{​μ​1​, … , ​μ​|  |​} such that for any 1 ≤ j < l ≤ |  |, ​μ​l​ ​⊁​​μ​j​​ ​μ​j​ . Let ϕ(​μ​1​) = ​μ​1​. 
For each k = 2, … , |  |, define

(4)	​ ​k​  =  {s  ∈  {​μ​1​, … , ​μ​k−1​}  :  s ​ ≻​​μ​k​​ ​ μ​k​ and ϕ(s)  =  s} .

Then

	​ μ​k​	 if ​​k​  =  ∅
(5)	 ϕ(​μ​k​)  =  {	 .
	 s  ∈  ​​k​ :  ∄ z  ∈  ​​k​ with z ​ ≻​​μ​k​​  s	 if ​​k​  ≠  ∅

(If there exist more than one s  ∈  ​​k​  such that ∄ z ∈ ​​k​ with z ​≻​​μ​k​​ s, pick any of 
these; this corresponds to multiple ϕ functions).

	 (iii) 	The stable sets of any two mappings ​ϕ​1​, ​ϕ​2​ ∈ Φ coincide; i.e., ​​ ​ϕ​1​​ = ​​ ​ϕ​2​​ = .

	 (iv) 	If, in addition, Assumption 3 holds, then for any two mappings ​ϕ​1​ and ​ϕ​2​ in 
Φ, ​ϕ​1​(s) ∼ ​ϕ​2​(s) for all s ∈ .

Theorem 1 provides a simple recursive characterization of the set of mappings Φ 
that satisfy Axioms 1–3. Intuitively, Assumption 2(i) ensures that there exists some 
state ​μ​1​ ∈  such that there does not exist another s ∈  with s ​≻​​μ​1​​ ​μ​1​. Taking ​μ​1​ 
as base, we order the states as { ​μ​1​, … , ​μ​ |  |​} according to relation ​⊁​​μ​j​​ as indicated 
in part 2 of the theorem. Then, we recursively construct the set of states ​​k​ ⊂ , 
k = 2, … , |  |, that includes stable states that are preferred to state ​μ​k​ (that is, states 
s such that ϕ(s) = s and s ​≻​​μ​k​​ ​μ​k​). When the set ​​k​ is empty, there exists no stable 
state that is preferred to ​μ​k​ (in ​μ​k​) by members of a winning coalition. In this case, 
we have ϕ(​μ​k​) = ​μ​k​ . When ​​k​ is nonempty, there exists such a stable state and thus 
ϕ(​μ​k​) = s for some such s. In addition to its recursive (and thus easy-to-construct) 
nature, this characterization is useful as it highlights the fundamental property of 
stable states emphasized in the Introduction: a state ​μ​k​ is made stable precisely by 

15 This theorem may be proved under weaker assumptions. Part (ii) of Assumption 2 may be substituted by 
the following condition: For any sequence of states s, ​s​1​, … , ​s​k​ in S with ​s​j​ ​≻​s​ s for 1 ≤ j ≤ k, ​s​j+1​ ​≻​s​ ​s​j​ for all 
1 ≤ j ≤ k − 1 would imply ​s​1​ ​⊁​ s​ ​s​k​ .
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the absence of winning coalitions in ​μ​k​ favoring a transition to another stable state 
(i.e., by the fact that ​​k​ = ∅). This insight plays an important role in applications.

Part (iii) of Theorem 1 shows that the set of stable states  does not depend on 
the specific ϕ chosen from Φ. For two different maps ​ϕ​1​ and ​ϕ​2​ in Φ, it is possible 
that ​ϕ​1​(​s​0​) ≠ ​ϕ​2​(​s​0​) for some initial state ​s​0​ , but the ranges of these mappings are 
the same. These ranges, and thus the set of stable states , are uniquely determined 
by preferences and the structure of winning coalitions.16 Finally, part 4 shows that 
when Assumption 3 holds, any stable states resulting from an initial state must be 
payoff-equivalent. In other words, if ​s​1​ = ​ϕ​1​(​s​0​) and ​s​2​ = ϕ(​s​0​), then ​s​1​ and ​s​2​ might 
differ in terms of the structure of winning coalitions, but they must give the same 
payoffs to each individual.

We have motivated the analysis leading up to Theorem 1 with the argument that, 
when agents are sufficiently forward-looking, only axiomatically stable states should 
be observed (at least in the “long run”; i.e., for t ≥ T for some finite T ). The analysis 
of the dynamic game introduced in the next section substantiates this interpretation.

III.  Noncooperative Foundations of Dynamically Stable States

We now describe the extensive-form game capturing dynamic interactions in the 
environment of Section I and characterize the Markov perfect equilibria (MPE) of 
this game. The main result is the equivalence between the MPE of this game and the 
set Φ in Theorem 1.

We first specify preferences and introduce transaction costs of changing states. At 
each date t, individual i maximizes discounted utility

(6)	​ U​ i​ (t )  =  (1  −  β) ​∑ 
τ=t

 ​ 
∞

 ​ ​β​ τ−t​​ ​u​i​ (τ ) ,

where β ∈ (0, 1) is a common discount factor. We also impose

Assumption 4 (Payoffs): The stage payoffs in (6) are given by

		​  w​ i​ (​s​t​)	 if ​s​t​  = ​ s​t−1​
(7)	​ u​i​ (t )  =  {			   .
		​​     w​​ i​	 if ​s​t​   ≠ ​ s​t−1​

For each i ∈  and any state x ∈ , we have

	​​    w​​ i​  < ​ w​ i​ (x) .

Assumption 4 introduces a “transaction cost” of state transitions: in any period 
in which there is a transition, each player obtains a lower payoff than she would 

16 In the online Appendix, we relate the set  to two concepts from cooperative game theory, von Neumann-
Morgenstern’s stable set and Chwe’s largest consistent set. Under Assumptions 1 and 2, both sets coincide with .
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have done without the transition. Given our normalization ​w​ i​ (s) > 0, Assumption 
4 is satisfied; e.g., if ​​ ˜ w​​ i​ = 0 for all i. Since we focus on the case of β close to 1, this 
transaction cost has little effect on discounted payoffs.17 In particular, once (and if) 
a dynamically stable state s is reached, individuals receive ​w​ i​ (s) at each date there-
after. Substantively, this transaction cost is introduced to guarantee the existence of 
a pure-strategy MPE.18

We next specify: (i) a protocol for a sequence of agenda-setters and proposals in 
each state; and (ii) a protocol for voting over proposals. Voting is sequential and is 
described below; the exact sequence in which votes are cast will not matter.19 We 
represent the protocol for agenda setting using a sequence of mappings, ​{​π​s​}​s∈​ , and 
refer to it simply as a protocol. Let ​K​s​ be a natural number for each s ∈ . Then, ​π​s​ 
is defined as a mapping

	​ π​s​  :  {1, … , ​K​s​}  →    ∪  

for each state s ∈ . Thus, each ​π​s​ specifies a finite sequence of elements from 
 ∪ , and determines the sequence of agenda-setters and proposals (here ​K​s​ is the 
length of this sequence for state s). If ​π​s​ (k) ∈ , then it denotes an agenda-setter 
who will make a proposal from the set of states . Alternatively, if ​π​s​ (k) ∈ , then 
it directly corresponds to an exogenously specified proposal over which individuals 
vote. Therefore, the extensive-form game is general enough to include both propos-
als for a change to a new state initiated by agenda-setters and exogenous proposals. 
We make the following assumption on ​{​π​s​}​s∈​ :

Assumption 5 (Protocols): For each s ∈ , one (or both) of the following two 
conditions holds:

	 (i ) 	For any state z ∈  \{s}, there exists k  :  1 ≤ k ≤ ​K​s​ such that ​π​s​ (k) = z.

	 (ii ) 	For any player i ∈  there exists k  :  1 ≤ k ≤ ​K​s​ such that ​π​s​ (k) = i.

This assumption implies that either sequence ​π​s​ contains all possible states other 
than the “status quo” s as proposals or it allows all possible agenda-setters to even-
tually make a proposal before the voting round ends. We assume that protocol ​π​s​ 
is fixed for each state s; different states might have the same payoffs and winning 
coalitions under different protocols.

17 More precisely, define ​
_
 ε ​ = ma​x​ i∈,  x∈​    ​ | ​w​ i​ (x) − ​​   w​​ i​ | , which is a natural measure of the size of transaction 

costs. Then for any ​
_
 ε ​, there exists ​β​0​ < 1 such that Theorem 2 holds for β > ​β​0​. This fact, which is proved in the 

online Appendix, implies that payoffs from the game considered here are arbitrarily close to an environment without 
transaction costs.

18 Examples 4 and 5 in the online Appendix demonstrate that if the transaction cost is removed from equation 
(7), a (pure-strategy) equilibrium may fail to exist or may include cycles. While these possibilities are potentially 
interesting, they appear to be nonrobust. Alternative game forms (e.g., those that assume a small cost of voting) lead 
to results similar to what we derive with the current specification.

19 The assumption of sequential voting allows us to focus on MPE without further refinements that are typically 
required to rule out counterintuitive voting equilibria. Acemoglu, Egorov, and Sonin (2009) suggest an equilibrium 
refinement, Markov trembling hand perfect equilibrium, which implies identical equilibrium behavior for games 
with simultaneous voting and corresponding games with sequential voting.
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In the beginning, at t = 0, state ​s​0​ ∈  is determined (either as part of the descrip-
tion of the environment or randomly). Subsequently (for t ≥ 1), the timing of events 
is as follows:

•	 Period t begins with state ​s​t−1​ inherited from the previous period.
•	 For k = 1, … , ​K​​s​t−1​​, the k th proposal ​P​ k, t​ is determined as follows. If ​π​​s​t−1​​(k) ∈ , 

then ​P​ k, t​ = ​π​​s​t−1​​(k). If ​π​​s​t−1​​(k) ∈ , then player ​π​​s​t−1​​(k) chooses ​P​ k, t​ ∈ .
•	 If ​P​ k, t​ ≠ ​s​t−1​, then there is sequential voting between ​P​ k, t​ and ​s​t−1​ (we will show 

that the sequence of voters has no effect on the equilibrium outcome). Each 
player votes yes (for ​P​ k, t​) or no (for ​s​t−1​). Let ​Y​ k, t​ denote the set of players who 
voted yes. If ​Y​ k, t​ ∈ ​​​s​t−1​​, then alternative ​P​ k, t​ is accepted; otherwise (if ​Y​ k, t​ ∉ ​
​​s​t−1​​ ), it is rejected. If ​P​ k, t​ = ​s​t−1​, there is no voting and we adopt the conven-
tion that in this case ​P​ k, t​ is rejected.

•	 If ​P​ k, t​ is accepted, then a transition to state ​s​t​ = ​P​ k, t​ takes place, and the period 
ends. If ​P​ k, t​ is rejected or if there is no voting because ​P​ k, t​ = ​s​t−1​ and k < ​K​​s​t−1​​, 
then the game moves to step 2 with k increased by 1; if k = ​K​​s​t−1​​, the next state 
is ​s​t​ = ​s​t−1​, and the period ends.

•	 At the end of the period, each player receives stage payoff ​u​i​ (t ).

An MPE is defined in the standard fashion as a subgame perfect equilibrium 
(SPE) where strategies are functions of “payoff-relevant states” only. Here payoff-
relevant states are different from the states s ∈  described above, since the pro-
posal under consideration, as well as votes already cast, are also payoff-relevant 
for the continuation game (see the online Appendix for a formal definition). Any 
Markovian strategy profile σ in the dynamic game defines a transition mapping 
on , s ↦ ​s​σ​, where ​s​t​ = ​s​ t−1​ σ  ​ is the next period’s state given state ​s​t−1​. In what 
follows, we use the terms MPE and equilibrium interchangeably. Next, we define 
dynamically stable states.

Definition 2 (Dynamically Stable States): State ​s​∞​ ∈  is a dynamically stable 
state if there exist an initial state ​s​0​ ∈ , a set of protocols ​{​π​s​}​s∈​ , an MPE strategy 
profile σ, and T < ∞ such that along the equilibrium path we have ​s​t​ = ​s​∞​ for all 
t ≥ T.

Put differently, ​s​∞​ is a dynamically stable state if it is reached in some finite time 
T and is repeated thereafter—​s​t​ = ​s​∞​ for all t ≥ T. Our objective is (i) to determine 
whether dynamically stable states exist in the dynamic game described above and 
to characterize them as a function of the initial state ​s​0​ ∈ , and (ii) to establish the 
equivalence between dynamically and axiomatically stable states characterized in 
the previous section.

We consider situations in which β is greater than some threshold ​β​0​ ∈ (0, 1) 
derived as an explicit function of payoffs in Appendix A. The main result of the 
paper is summarized in the following theorem.

Theorem 2 (Characterization of Dynamically Stable States): Suppose that 
Assumptions 1, 2, 4, and 5 hold. Then there exists ​β​0​ ∈ (0, 1) such that for all β > ​β​0​ , 
the following is true.
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	 (i)	 For any ϕ ∈ Φ there exists a set of protocols ​{​π​s​}​s∈​ and a pure-strategy 
MPE σ of the game such that for any ​s​0​ ∈ , ​s​ t​ 

σ​ = ϕ(​s​0​) for any t ≥ 1; that 
is, the game reaches ϕ(​s​0​) after one period and stays in this state thereafter. 
Therefore, for each ​s​0​ ∈ , s = ϕ(​s​0​) is a dynamically stable state.

	 (ii)	M oreover, for any set of protocols ​{​π​s​}​s∈​ there exists a pure-strategy MPE. 
Any such MPE σ has the property that there exists ϕ ∈ Φ such that for any 
initial state ​s​0​ ∈ , ​s​ t​ 

σ​ = ϕ(​s​0​) for all t ≥ 1. Therefore, all dynamically stable 
states are axiomatically stable.

	 (iii) 	If, in addition, Assumption 3 holds, then the MPE is essentially unique: for 
any set of protocols ​{​π​s​}​s∈​ , any pure-strategy MPE σ, any initial state ​s​0​ ∈ , 
and any ϕ ∈ Φ, ​s​ 0​ 

σ​ ∼ ϕ(​s​0​).

Parts (i) and (ii) of Theorem 2 state that the set of dynamically stable states and 
the set of stable states  defined by axiomatic characterization in Theorem 1 coin-
cide; any mapping ϕ ∈ Φ that satisfies Axioms 1–3 is the outcome of a pure-strategy 
MPE and any such MPE implements the outcome of some ϕ ∈ Φ. An important 
implication is that the recursive characterization of axiomatically stable states in 
equation (5) can be used to calculate dynamically stable states.

The equivalence of the results of Theorems 1 and 2 is intuitive. Had players been 
short-sighted (impatient), they would care mostly about the payoffs in the next state 
or the next few states that would arise along the equilibrium path. When players are 
sufficiently patient, however (β > ​β​0​), they care more about payoffs in the ultimate 
state than the payoffs along the transitional states. Consequently, winning coali-
tions are not willing to move to a state that is not (axiomatically) stable according 
to Theorem 1.

The proof of Theorem 2 is technically involved, but the idea is intuitive. For a 
given mapping ϕ ∈ Φ, we conjecture the continuation payoffs from accepting a par-
ticular alternative z in state s. We construct an MPE in the truncated game starting in 
state s in period t with terminal payoffs given by the continuation payoffs. We then 
show that transitions are given by ϕ, and the continuation payoffs are as conjectured. 
Conversely, if σ is an MPE, we show that transitions starting from any state s will 
eventually converge to some state ψ(s), and then use Assumption 2(i) to show that 
any equilibrium path must lead to a state that is payoff-equivalent to ψ(s). Finally, 
we verify that mapping ψ(s) satisfies Axioms 1–3.

As illustrated by Example 1 in the Introduction, there is a tension between dis-
tribution of payoffs in a state and distribution of political power in the same state. 
Sometimes, Pareto improving transitions are impossible without changing the bal-
ance of political power. The next theorem clarifies the conditions under which Pareto 
efficiency will arise.

Theorem 3 (Pareto Efficiency): Suppose that for every two states x and y 
there is a state z such that ​{​w​ i​ (z)}​i∈ ​ = ​{​w​ i​ ( y)}​ i∈ ​ and ​​ z​ ⊂ ​​ x​ , and no state 
is exogenously stable (i.e., ​​ s​ ≠ ∅ for each s ∈  ). Then, every (axiomatically 
or dynamically) stable state is Pareto efficient. Otherwise, stable states may be 
Pareto inefficient.
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The positive result is that whenever the political environment is such that the cur-
rent decision-makers can alter the economic allocation without giving up political 
power (which is captured here by the fact that a transition from x to z achieves the 
same payoffs as a transition to y without reallocating power to other groups), only 
Pareto efficient states are stable.

IV.  Ordered States and Agents

Theorems 1 and 2 provide a complete characterization of axiomatically and 
dynamically stable states as a function of the initial state ​s​0​ ∈  provided that 
Assumptions 1 and 2 are satisfied. While the former is a very natural assumption 
and easy to check, Assumption 2 may be somewhat more difficult to verify. In this 
section, we show that when the sets of states  and agents  admit a linear order 
according to which individual stage payoffs satisfy single-crossing or single-peak-
edness properties (and the set of winning coalitions ​{​​s​}​s∈​ satisfies some natural 
additional conditions), Assumption 2 is satisfied. This result enables more straight-
forward application of our main theorems in a wide variety of circumstances.

In a number of applications, the set of states  has a natural order, so that any two 
states x and y can be ranked. When such an order exists, we can take, without loss of 
any generality,  to be a subset of 핉. Similarly, let  ⊂ 핉. Given these orders on the 
set of states and the set of individuals, we introduce certain standard restrictions on 
preferences.20 All of the following restrictions and definitions refer to stage payoffs 
and are thus easy to verify.

Definition 3 (Single-Crossing and Single-Peakedness): Given  ⊂ 핉,  ⊂ 핉, 
and ​{​w​ i​ (s)}​i∈, s∈​ , the single-crossing condition holds if for any i, j ∈  and x, y ∈  
such that i < j and x < y, ​w​ i​ ( y) > ​w​ i​ (x) implies ​w​ j​ ( y) > ​w​ j​ (x) and ​w​ j​ ( y) < ​w​ j​ (x) 
implies ​w​ i​ (y) < ​w​ i​ (x). 

Given  ⊂ 핉 and ​{​w​ i​ (s)}​i∈, s∈​ , preferences are single-peaked if for any i ∈  
there exists a state ​x​i​ such that for any y, z ∈ , y < z ≤ ​x​i​ or ​x​i​ ≥ z > y implies ​
w​ i​ ( y) ≤ ​w​ i​ (z).

We next introduce a generalization of the notion of the “median voter” to more 
general political institutions (e.g., those involving supermajority rules within the 
society or a club).

Definition 4 (Quasi-Median Voter): Given  ⊂ 핉 and ​{​​ s​}​ s∈​ , player i ∈  is a 
quasi-median voter (in state s) if for any X ∈ ​W​ s​ such that X = { j ∈  : a ≤ j ≤ b} 
for some a, b ∈ 핉 we have i ∈ X.

Denote the set of quasi-median voters in state s by ​M​ s​ . Lemma 1 in the proof of 
Theorem 4 shows that, provided that Assumption 1 is satisfied, this set is nonempty.

20 Rothstein (1990) and Austen-Smith and Banks (1999) study another restriction, order-restricted preferences. 
As Gans and Smart (1996) show, this notion is equivalent to single-crossing and is thus covered by our framework.
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Definition 5 (Monotonic Median Voter Property): Given  ⊂ 핉 and  ⊂ 핉, the 
set of winning coalitions ​{​​ s​}​ s∈​ has monotonic median voter property if for each 
x, y ∈  satisfying x < y there exist i ∈ ​M​ x​ , j ∈ ​M​y​ such that i ≤ j.

The last definition is general enough to encompass majority and supermajority 
voting as well as those voting rules that apply to a subset of players (such as club 
members or those that are part of a restricted franchise). Finally, we also impose the 
following weak genericity assumption.

Assumption 6 (Weak Genericity): Preferences ​{​w​ i​ (s)}​ i∈, s∈​ and the set of win-
ning coalitions ​{​​ s​}​ s∈​ are such that for any x, y, z ∈ , x ​⪰​ z​ y implies x ​≻​z​ y or x ∼ y.

Assumption 6 is satisfied if no player is indifferent between any two states 
(though it does not rule out such indifferences). Next, we present the main result 
of this section.

Theorem 4 (Characterization with Ordered States): For any  ⊂ 핉,  ⊂ 핉, pref-
erences ​{​w​ i​ (s)}​ i∈, s∈​ , and winning coalitions ​{​​ s​}​ s∈​ satisfying Assumption 1 and 
Assumption 6:

	 (i) 	If single-crossing condition and monotonic median voter property hold, then 
Assumption 2 is satisfied and, thus, Theorems 1 and 2 apply.

	 (ii ) 	If preferences are single-peaked and for any x, y ∈  and any X ∈ ​​x​ , Y ∈ ​​y​ 
we have X ∩ Y ≠ ∅, then Assumption 2 is satisfied and thus Theorems 1 and 
2 apply.

Part (ii) of Theorem 4 requires a stronger condition than the monotonic median 
voter property. Because this condition implies the monotonic median voter property, 
part 1 of the theorem continues to be true under the hypothesis of part 2. The con-
verse is not true, however.

V.  Application

In this section, we apply our results to the dynamics of political rights discussed 
in Example 2 in the Introduction. Consider a society  = {1, … , n} consisting of n 
groups (or individuals) ranked in ascending order of religiosity, so that 1 is most 
secular and n is most religious. There is a one-dimensional policy space indexed 
by ρ ∈ R = { ​ρ​1​, … , ​ρ​r​ }, where higher ρ corresponds to greater tolerance towards 
religiosity and less tolerance towards nonreligious individuals.

In each period t, the set of individuals who have the right to political participation 
is ​Z​ t​ , a connected subset of . We assume that at each date, political decisions are 
made by α-(super)majorities (i.e., coalitions of at least α | ​Z​ t​ | members). These deci-
sions include the determination of which subset of the society will have the right for 
political participation in the next period (i.e., the subset ​Z​ t+1​ ) and the next period’s 
religiosity policy ​ρ​t+1​. The state can thus be represented by s = (ρ, Z ) where ρ ∈ R 
and Z is a connected subset of .
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We assume that each individual cares about the policy toward religiosity ρ and 
also about the extent of political participation in society. For example, higher politi-
cal participation may increase income or the amount of public goods, or decrease 
political instability. Since these effects are likely to affect all players equally, we 
assume that preferences over states are given by

	​ w​ i​ (s)  = ​ v​i​ (ρ)  +  V (Z ) ,

where V (Z ) is any function, and ​v​i​ (ρ) satisfies the strict increasing differences 
condition:

	​ v​i​ (ρ)  − ​ v​j​ (ρ)  is strictly increasing in ρ whenever i  >  j.

This condition implies, in particular, that the sequence of ideal policies of agents, 
{​ ​  ρ ​​i​ ​}​ i=1​ 

n
  ​ , is (weakly) monotonically increasing. It is satisfied, for example, when 

individuals have quadratic utility function ​v​i​ (ρ) = − ​(ρ − ​​  ρ​​i​)​2​.
Since an α-(super)majority in Z chooses the religiosity policy for the next period, 

ρ, it is natural that this policy choice is between ​​  ρ​​ min ​M​Z​​ and ​​  ρ​​ max ​M​Z​​ , where, as before, ​
M​Z​ is the set of quasi-median voters. Formally, the set of states  consists of all pairs 
(ρ, Z ), where Z is a connected subset of  and ​​  ρ​​ min ​M​Z​​ ≤ ρ ≤ ​​  ρ​​ max ​M​Z​​ .

This example specifies a rich and highly complex social situation. Granting 
political participation to previously excluded religious (resp., secular) individuals 
will have short-run economic benefits, but could unleash a political process that 
might later on deprive secular (resp., religious) individuals of their political rights. 
The richness of the environment results from the fact that individuals with politi-
cal rights are simultaneously choosing a policy ρ and the subset of the society 
Z that will have political rights in the future. Despite this, the tools and insights 
developed so far can be applied to derive a sharp characterization of the structure 
of equilibria.

We first establish that Assumptions 1 and 2 are satisfied, so that the dynamic 
equilibrium in this environment can be characterized by applying Theorems 1 and 
2. To simplify the exposition of the results, we assume that ​w​ i​ (s) ≠ ​w​ i​ (s′ ) for any 
i ∈  and s ≠ s′, which ensures that Assumption 6 holds. Thus, we can use ϕ(​s​0​) 
to denote the state, both axiomatically and dynamically stable, that corresponds to 
intitial state ​s​0​.

Proposition 1:

	 (i)	 For any degree of (super) majority α, Assumptions 1 and 2 are satisfied and 
thus Theorems 1 and 2 apply in this environment. In particular, there exists ​
β​0​ < 1 such that for any discount factor β > ​β​0​ , an equilibrium exists.

	 (ii)	 Assume V (Z ) to be (strictly) increasing (whenever Z ≠ Z′, Z ⊂ Z ′ implies 
V (Z ) < V (Z ′ )). Then for any initial state ​s​0​, ϕ(​s​0​) = s = (Z, ρ) with Z con-
taining at least one of the extreme players, 1 or n.
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To prove the first part, we enumerate the states {​s​1​, … , ​s​|  |​ } so that ​ρ​s​ is weakly 
increasing. We then establish that strict increasing differences and monotonic median 
voter properties hold, and use Theorem 4.21 The second part of Proposition 1 shows 
that when V is an increasing function, stable states provide political rights to at least 
one of the extreme members of the society. Intuitively, this holds because the threat 
to the current set of individuals holding power comes either from greater religios-
ity or greater secularism. Thus, there will necessarily be expansion toward the less 
threatening side.

This result does not rule out that political rights will be given to everybody in 
society. The next proposition studies this question. In what follows, we assume that 
V (Z ) is strictly increasing and ​v​i​ (ρ) is single-peaked for all i ∈ .

Proposition 2: Define A ≡ V ( ) − ma​x​ i∈​V ( \{i }) and ​A​i​ ≡ V ( ) − V ({i}).

	 (i)	 Suppose ​v​1​(​​  ρ​​1​) − ​v​1​(​​  ρ​​min ​M​​​ ) < A and ​v​n​(​​  ρ​​n​) − ​v​n​(​​  ρ​​max ​M​​​) < A. Then for 
any initial state s, Z (ϕ(s)) = .

	 (ii)	 Suppose ​v​1​(​​  ρ​​1​) − ​v​1​(​​  ρ​​min ​M​​​ ) > ​A​1​ and ​v​n​(​​  ρ​​n​) − ​v​n​(​​  ρ​​max ​M​​​) > ​A​n​ . There 
exists k ∈ 핅 such that if the initial state ​s​0​ satisfies | Z (​s​0​) | ≤ k, then (i ) when ​
Z​ 0​ includes the middle player (or at least one of the two middle players if n 
is even), Z (ϕ(​s​0​)) = , and (ii ) when ​Z​ 0​ includes one of the extreme players, 
Z (ϕ(​s​0​)) ≠ .

	 (iii)	 If α > ​ n − 1
 _ n  ​ , i.e., the rule is unanimity, then for any initial state ​s​0​ , Z (ϕ(​s​0​)) 

= .

The first part of this proposition shows that if utility gains from greater political 
participation are sufficiently large (sufficient to compensate extremists for a change 
in policies towards religiosity), then political participation is granted to all parties. 
More interestingly, the second part shows that when these gains are not sufficiently 
large, political participation is granted to all if political power initially rests with 
moderates and is not granted if it rests with one of the extremes.

The third part asserts that if the decision rule is unanimity, then political rights 
can be extended to all individuals because the status quo religious policy may be 
preserved in this case. Intuitively, unanimity guarantees that political power will not 
shift to extremists of the opposite conviction and thus enables expansion of political 
participation.22 This final result raises the question of whether the groups that are 
currently powerful can introduce a unanimity clause into the current constitution 
or set of rules in order to cement their political power even as reforms are imple-
mented. While this may be feasible under certain circumstances, we believe that 
it is in general not possible to grant political participation to new groups and indi-
viduals but effectively take away their ability to implement significant future policy 

21 Note, however, that the original environment is not ordered and this theorem could not have been applied 
directly; we can only apply it after undertaking this enumeration.

22 This is similar to the general result in Theorem 3, which shows that when a policy may be changed without 
undermining the power of currently powerful players, equilibria are necessarily Pareto efficient. (Recall that only 
states with full participation are Pareto efficient in this application).
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changes by introducing unanimity clauses or other restrictions. (One reason is that 
this would go against the spirit of current allocation of political power determining 
current policy choices and reforms.)

Finally, we consider an even richer environment where individuals also choose 
the degree of (super)majority rule α. In particular, now a state is s = (ρ, Z, α), with 
α ∈ , where  ⊂ [1/2, 1] is a finite set. Then, since  is a finite set, our previous 
results yield the following proposition.

Proposition 3:

	 (i)	 In this environment, Assumptions 1 and 2 are satisfied and thus Theorems 1 
and 2 apply.

	 (ii)	 Suppose that  contains α > ​ n − 1
 _ n  ​ . Then for any equilibrium and for any 

state ​s​0​ , Z (ϕ(​s​0​)) = .

This proposition demonstrates the applicability of our results in the environment 
in which the degree of supermajority necessary for future decisions is also a collec-
tive choice. Again, whenever unanimity can be imposed, full participation is guaran-
teed. Intuitively, they can make any (and every) individual a veto player, preventing 
future policy changes. We should, however, reiterate at this point that this result does 
not imply that changing the decision rule to unanimity is always or often feasible. In 
many relevant situations, including those mentioned in the Introduction and several 
we discuss in the online Appendix, it is a hard-wired feature that future decisions 
will be made by a (weighted) majority of those who participate in future decision 
making, and their ability to change policies and laws cannot be restricted by past 
unanimity clauses or constitutional requirements.23 Along these lines, for example, 
those worried about the “slippery slope” of giving more rights to religious groups in 
Turkey fear that any constitutional guarantees can be changed in the future.

VI.  Conclusion

A central feature of collective decision making in many social situations, such as 
societies choosing their constitutions or institutions, leaders building political coali-
tions, countries joining international unions, or private clubs deciding on their mem-
bership, is that the rules that govern regulations and procedures for future decision 
making, and inclusion and exclusion of members, are made by the current members 
and under the current regulations. This feature implies that dynamic collective deci-
sions must recognize the impact of current decisions on future choices.

We developed a framework for a systematic study of this class of problems. We 
provided both an axiomatic and a noncooperative characterization of stable states 
and showed that the set of (dynamically) stable states can be computed recursively. 
This recursive characterization highlights that a particular state s is stable if no other 
stable state makes a winning coalition (in s) better off. This implies that stable states 

23 See Acemoglu, Egorov, and Sonin (2008) for an example.
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need not be Pareto efficient; there may exist a state that provides higher payoffs to 
all individuals, but is itself not stable.

Our analysis relies on several substantive and technical assumptions. Substantive 
assumptions, such as a minimum amount of acyclicity, are essential for our approach. 
Others, the technical ones, are adopted for convenience and can be relaxed, though 
often at the cost of further complication. Among possible extensions, most interest-
ing might be to introduce stochastic elements so that the set of feasible transitions or 
the distribution of powers vary stochastically over time, and to include capital-like 
state variables so that some subcomponents of the state have autonomous dynamics.

Appendix

Proof of Theorem 1:

Part 1: We first construct, by induction, a sequence of states {​μ​1​, … , ​μ​|  |​ } such 
that

(A1)	 if 1  ≤  j  <  l  ≤  |  | , then ​μ​l​ ​ ⊁​​μ​j​​ ​ μ​j​ .

Assumption 2(i) implies that for any nonempty collection of states  ⊂ , there 
exists z ∈  such that for any x ∈ , x ​⊁​z​ z. Applying this result to , we obtain ​μ​1​. 
Now, suppose we have defined ​μ​j​ for all j ≤ k − 1, where k ≤ |  |. Applying the 
same result to the collection of states  \{ ​μ​1​, … , ​μ​k−1​}, we conclude that there exists ​
μ​k​ satisfying (A1) for each k.

The second step is to construct, again by induction, a candidate mapping 
ϕ  :   → . For k = 1, let ϕ(​μ​k​) = ​μ​k​. Suppose we have defined ϕ(​μ​j​) for all 
j ≤ k − 1 where 2 ≤ k ≤ |  |. Define the collection of states ​​k​ as in (4). 
This is the subset of states for which ϕ has already been defined and which sat-
isfies ϕ(s) = s and is preferred to ​μ​k​ within ​μ​k​. If ​​k​ is empty, then we define 
ϕ(​μ​k​) = ​μ​k​ . If ​​k​ is nonempty, then take ϕ(​μ​k​) = z ∈ ​​k​ such that

(A2)	 s ​ ⊁​​μ​k​​  z for any s ∈ ​​k​

(applying Assumption 2(ii) to ​​k​ , we get that there exists z ∈ ​​k​ such that s ​⊁​ ​μ​k​​ z, 
and thus s ​⊁​​μ​k​​ z, for all s ∈ ​​k​ ). Proceeding inductively for all 2 ≤ k ≤ |  |, we 
obtain ϕ as in equation (5).

To complete the proof, we need to verify that mapping ϕ in (5) satisfies Axioms 1–3. 
This is straightforward for Axioms 1 and 2. In particular, by construction, either 
ϕ(​μ​k​) = ​μ​k​ (in that case these axioms hold trivially), or ϕ(​μ​k​) is an element of ​​k​ . 
In the latter case, ϕ(​μ​k​) ​≻​​μ​k​​ ​μ​k​ and ϕ(ϕ(​μ​k​)) = ϕ(​μ​k​) by (4). To check Axiom 3, sup-
pose that for some state ​μ​k​ there exists y such that y ​≻​​μ​k​​ ​μ​k​ , y = ϕ(z), and y ​≻​​μ​k​​ ϕ(​μ​k​). 
Then y ​≻​​μ​k​​ ​μ​k​ , combined with condition (A1), implies that y ∈ { ​μ​1​, … , ​μ​k−1​ }, and 
therefore y ∈ ​​k​ . But then y ​≻​​μ​k​​ ϕ(​μ​k​) contradicts (A2). This means that such y 
does not exist, and therefore Axiom 3 is satisfied.

Part 2: This statement is equivalent to the following: if, given a sequence 
{ ​μ​1​, … , ​μ​|  |​ } with the property (A1), ϕ(​μ​k​) does not satisfy (5) for some k, then ϕ 
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does not satisfy Axioms 1–3. Suppose first that ϕ(​μ​k​) is not given by (5) at k = 1. 
Then ϕ(​μ​1​) ≠ ​μ​1​ , so ϕ(​μ​1​) = ​μ​l​ for l > 1. In this case, ϕ does not satisfy Axiom 1, 
because ​μ​l​ ​⊁​​μ​1​​ ​μ​1​ by (A1). Now, let k > 1 be the smallest k for which ϕ(​μ​k​) is not 
given by (5). Suppose, to obtain a contradiction, that Axioms 1–3 hold. Then ​​k​ 
in (4) is well defined, and either ​​k​ = ∅ or ​​k​ ≠ ∅. If ​​k​ = ∅ and ϕ(​μ​k​) is 
not given by (5), then ϕ(​μ​k​) ≠ ​μ​k​ . Then, Axioms 1 and 2 imply ϕ(​μ​k​) ​≻​​μ​k​​ ​μ​k​ and 
ϕ(ϕ(​μ​k​)) = ϕ(​μ​k​). Since ​​k​ = ∅, we must have that ϕ(​μ​k​) = ​μ​l​ for l > k, but in 
this case ϕ(​μ​k​) ​≻​​μ​k​​ ​μ​k​ contradicts (A1). This contradiction implies that ϕ violates 
either Axiom 1 or Axiom 2 (or both). If ​​k​ ≠ ∅, then consider ​μ​l​ = ϕ(​μ​k​). If l > k, 
then Axiom 1 is violated. If l = k, then ϕ violates Axiom 3 (to see this, take any 
z ∈ ​​k​ ≠ ∅ and observe that z ​≻​​μ​k​​ ​μ​k​ , z ​≻​​μ​k​​ ϕ(​μ​k​) and ϕ(z) = z). If l < k, then 
Axiom 1 and Axiom 2 imply ϕ(​μ​k​) ∈ ​​k​. Then, since ϕ(​μ​k​) is not given by (5), there 
exists some y ∈ ​​k​ such that y ​≻​​μ​k​​ ϕ(​μ​k​). But in this case ϕ violates Axiom 3, since 
y ​≻​​μ​k​​ ϕ(​μ​k​), y ​≻​​μ​k​​ ​μ​k​ , and ϕ(y) = y . We have obtained contradictions in all possible 
cases.

Part 3: Suppose, to obtain a contradiction, that ​​​ϕ​1​​ ≠ ​​​ϕ​2​​ . Then ∃ k : 1 ≤ k ≤ |  | 
such that ​μ​j​ ∈ ​​​ϕ​1​​ ⇔ ​μ​j​ ∈ ​​​ϕ​2​​ for all j < k, but either ​μ​k​ ∈ ​​​ϕ​1​​ and ​μ​k​ ∉ ​​​ϕ​2​​ , 
or ​μ​k​ ∉ ​​​ϕ​1​​ and ​μ​k​ ∈ ​​​ϕ​2​​ . Without loss of generality, assume that ​μ​k​ ∈ ​​​ϕ​1​​ and 
​μ​k​ ∉ ​​​ϕ​2​​ . Then part 2 implies that ​ϕ​2​(​μ​k​) = ​μ​l​ for some l < k. Applying Axioms 1 
and 2 to mapping ​ϕ​2​ , we obtain ​μ​l​ ​≻​​μ​k​​ ​μ​k​ and ​ϕ​2​(​μ​l​) = ​μ​l​ ; the latter implies that ​
μ​l​ ∈ ​​​ϕ​2​​ . Since, by hypothesis, ​μ​j​ ∈ ​​​ϕ​1​​ ⇔ ​μ​j​ ∈ ​​​ϕ​2​​ for all j < k, we have ​μ​l​ ∈ ​​​ϕ​1​​ . 
Therefore, ​μ​l​ ​≻​​μ​k​​ ​μ​k​ , ​μ​l​ ​≻​​μ​k​​ ​ϕ​1​(​μ​k​) (because ​ϕ​1​(​μ​k​) = ​μ​k​), and ​ϕ​1​(​μ​l​) = ​μ​l​ , but this 
violates Axiom 3 for mapping ​ϕ​1​.

Part 4: Suppose Assumption 3 holds. Suppose, to obtain a contradiction, that for 
some state s, ​ϕ​1​(s) ≁ ​ϕ​2​(s). Part 3 of this Theorem implies that ​ϕ​1​(s) = s ⇔ ​ϕ​2​(s) 
= s; since ​ϕ​1​(s) ≁ ​ϕ​2​(s), we must have that ​ϕ​1​(s) ≠ s ≠ ​ϕ​2​(s). Axiom 1 then implies ​
ϕ​1​(s) ​≻​s​ s, ​ϕ​2​(s) ​≻​s​ s, and Assumption 3 implies that either ​ϕ​1​(s) ​≻​s​ ​ϕ​2​(s) or ​ϕ​2​(s) ​
≻​s​ ​ϕ​1​(s). Without loss of generality, suppose that the former is the case. Then for 
y = ​ϕ​2​(s) there exists z = ​ϕ​1​(s) such that z ​≻​s​ y, z ​≻​s​ s, and ​ϕ​2​(z) = z (the latter holds 
because ​ϕ​1​(s) = s by Axiom 2, and then ​ϕ​2​(s) = s by part 3 of this Theorem). Then 
we can apply Axiom 3 to ​ϕ​2​ and s and conclude that ​ϕ​2​(s) ≠ y, a contradiction.

Proof of Theorem 2:

Part 1: Assume β satisfies the following conditions:

(A3)	 for any i  ∈    and  x, y  ∈  ,

	​ w​ i​ (x)  < ​ w​ i​ ( y)  implies ​w​ i​ (x)  <  (1  − ​ β​ |  |​ ) ​​   w​​ i​  + ​ β​ |  |​ ​w​ i​ ( y).

To prove part 2, we will also need the following conditions:

(A4)	 for any i  ∈    and  x, y, z  ∈  ,

	​ w​ i​ (x)  < ​ w​ i​ ( y)  implies ​ 
1  −  β _ β ​  (​w​ i​ (z)  −  (1  −  β) ​​   w​​ i​)  +  β ​w​ i​ (x)  < ​ w​ i​ ( y).
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In total, there is a finite number of conditions in (A3) and (A4). Therefore, there 
exists ​β​ 0​ ∈ (0, 1) such that for all β > ​β​ 0​ , (A3) and (A4) hold.

Pick any ϕ ∈ Φ and any ​s​0​ ∈ S. We construct an MPE of the game such that for 
each period t ≥ 1, ​s​t​ = ϕ(​s​t−1​). For i ∈  and s, q ∈ , let

	 (1 − β) ​w​ i​ (s)	 if s = q
(A5)	​ V​ i​ (s, q) = {	 }	
	 (1 − β) ​​   w​​ i​	 if s ≠ q

		  β ​w​ i​ (ϕ(q))	 if ϕ(q) = q 
	 + {			   } .
		  β (1 − β) ​​   w​​ i​ + ​β​ 2​ ​w​ i​ (ϕ(q))	 if ϕ(q) ≠ q

In the equilibrium we construct below, ​V​ i​ (s, q) will be the continuation payoff of i 
as a function of the current state s and the accepted proposal q. In the remainder, we 
drop time indices.

For each s ∈ , take ​K​s​ ≥ |  | − 1. Take ​π​s​ ( ⋅ ) such that Assumption 5 holds, and 
if ϕ(s) ≠ s, then ​π​s​ (​K​s​) = ϕ(s). Consider strategy profile ​σ​*​ constructed as follows: 
Each i ∈  votes for proposal ​P​ k​ (says yes) if and only if:

	 (i) 	either k = ​K​s​ (we are at the last stage of voting), ​P​ ​K​s​​ = ϕ(s) and ​V​ i​ (s, ϕ(s)) > ​
V​ i​ (s, s);

	 (ii)	  or ​V​ i​ (s, ​P​ k​) > ​V​ i​ (s, ϕ(s)).

In addition, if ​π​s​ (k) ∈  for some k, this player chooses proposal ​P​ k​ arbitrarily.
The strategy profile ​σ​*​ is Markovian. We will show that it is an MPE in three steps.
First, we show that under the strategy profile ​σ​*​, there is a transition to ϕ(s) if ϕ(s) ≠ s 

and no transition if ϕ(s) = s. Suppose that ϕ(s) ≠ s, then Axiom 1 implies that

	​ X​s​  ≡  {i  : ​ w​ i​ (ϕ(s))  > ​ w​ i​ (s)}  ∈ ​ ​ s​ .

Now, (A3) and β > ​β​0​ imply that for all i ∈ Xs , we have

	​ V​ i​ (s, ϕ(s))  =  (1  −  β) ​​   w​​ i​  +  β ​w​ i​ (ϕ(s))  >  (1  −  β) ​w​ i​ (s) 

	 +  β(1  −  β) ​​   w​​ i​  + ​ β​ 2​ ​w​ i​ (ϕ(s))  = ​ V​ i​ (s, s) .

Consequently, if ϕ(s) ≠ s, then under ​σ​*​, there is transition to ϕ(s) if stage ​K​s​ is 
reached.

Let us now show that there exist no ​X​ s​ ′ ​ ∈ ​​ s​ and ​P​ k​ ∈  such that ​V​ i​ (s, ​P​ k​) > ​
V​ i​ (s, ϕ(s)) for all i ∈ ​X​ s​ ′ ​ ; i.e., the set of players for whom ​V​ i​ (s, ​P​ k​) > ​V​ i​ (s, ϕ(s)) is 
not a winning coalition in s. To obtain a contradiction, suppose there exists such a ​
X​ s​ ′ ​ and ​P​ k​ . Then, since ​P​ k​ ≠ s and ϕ(ϕ(s)) = ϕ(s), we would have that for all i ∈ ​X​ s​ ′ ​ ,

	​ w​ i​ (ϕ(​P​ k​))  >  (1  −  β) ​​   w​​ i​  +  β ​w​ i​ (ϕ(​P​ k​))  ≥ ​ V​ i​ (s, ​P​ k​) 

	 > ​ V​ i​ (s, ϕ(s))  ≥  (1  −  β) ​​   w​​ i​  +  β ​w​ i​ (ϕ(s)),
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and thus, by (A3),

	​ w​ i​ (ϕ(​P​ k​))  > ​ w​ i​ (ϕ(s))  for all  i  ∈ ​ X​ s​ ′ ​ .

So, ​X​ s​ ′ ​ ∈ ​​ s​ implies ϕ(​P​ k​) ​≻​s​ ϕ(s), which, given that ϕ(s) ​≻​s​ s, yields ϕ(​P​ k​) ​≻​s​ s 
by Assumption 2(ii). But ϕ(​P​ k​) ​≻​s​ ϕ(s), ϕ(​P​ k​) ​≻​s​ s, and ϕ(ϕ(​P​ k​)) = ϕ(​P​ k​) contra-
dicts Axiom 3. Therefore, the set of players with ​V​ i​ (s, ​P​ k​) > ​V​ i​ (s, ϕ(s)) does not 
form a winning coalition in s. This means that under ​σ​*​, no proposal is accepted if 
ϕ(s) = s, and if ϕ(s) ≠ s, then no proposal is accepted in all stages but the last one, 
and in the last stage ​P​ ​K​s​​ = ϕ(s) is accepted.

Second, we verify that given ​σ​*​, continuation payoffs after acceptance of pro-
posal q are given by (A5). If proposal q ≠ s is accepted, then there is an immediate 
transition to q, while if no proposal is accepted, then each player i receives stage 
utility (1 − β) ​w​ i​ (s). In the next period, there is a transition (to ϕ(q)) under ​σ​*​ if and 
only if ϕ(q) ≠ q, and after that there are no transitions along the equilibrium path. 
Hence, the continuation payoffs are given by (A5).

Third, we show that there are no profitable deviations from ​σ​*​ at any stage. For 
an agenda-setter, this holds because no proposal that he can make is accepted. For 
a voter, notice that since continuation strategies are Markovian, it is always a best 
response to vote for the option that the player (weakly) prefers, and this is what 
profile ​σ​*​ prescribes. Indeed, if ϕ(s) ≠ s, then in the last voting stage, each player 
i compares continuation payoff ​V​ i​ (s, ϕ(s)) if the proposal is accepted and ​V​ i​ (s, s) if 
it is rejected. In all other voting stages, player i receives ​V​ i​ (s, ​P​ k​) if proposal ​P​ k​ is 
accepted and ​V​ i​ (s, ϕ(s)) if it is rejected (because ϕ(s) will eventually be accepted 
if ϕ(s) ≠ s and no proposal is accepted if ϕ(s) = s). Therefore, there are no profit-
able deviations from ​σ​*​ given the continuation payoffs in (A1). Thus, ​σ​*​ is a best 
response to itself at every voting stage for any s ∈ , and thus ​σ​*​ is an MPE of the 
entire game.

Part 2: We first prove that an MPE exists, and then that any MPE has the stated 
properties. We first construct a mapping ϕ satisfying Axioms 1–3. Take a sequence 
of states { ​μ​1​, … , ​μ​|  |​ } satisfying (A1). Then, follow the procedure described in 
Theorem 1. First, we set ϕ(​μ​1​) = ​μ​1 ​. If for l ≥ 2 we have ​​ l​ = ∅, then ϕ(​μ​l​) = ​μ​l​ ; 
otherwise, define ​Z​ l​ ⊂ ​​ l​ by

	​ Z​ l​  =  {z  ∈ ​ ​ l​  :  ∀s  ∈ ​ ​ l​  :  s  ≁  z  ⇒  s ​ ⊁​ ​μ​l​​  z}.

Then ​Z​ l​  ≠ ∅, as we can apply Assumption 2(b) to ​​ l​ . Choose a particular ele-
ment of ​Z​ l​ as ϕ(​μ​l​) as follows. Let ​Y​ ​μ​l​​ be the set of stages of protocol ​π​​μ​l​​ such that 
for any stage j ∈ ​Y​ ​μ​l​​ , ​π​​μ​l​​ ( j ) ∈  implies ​π​​μ​l​​ ( j ) ∈ ​Z​ l​ , and ​π​​μ​l​​ ∈  implies that for 
some z ∈ ​Z​ l​ : ​w​ i​ (z) > ​w​ i​ (​μ​l​), where i = ​π​​μ​l​​ ( j ). By Assumption 5, ​Y​ ​μ​l​​ is nonempty; 
let ​k​ ​μ​l​​ * ​ be the last stage from ​Y​ ​μ​l​​ . If ​π​​μ​l​​ (​k​ ​μ​l​​ * ​ ) ∈ , then let ϕ(​μ​l​) = ​π​​μ​l​​ (​k​ ​μ​l​​ * ​ ), while 
if ​π​​μ​l​​ (​k​ ​μ​l​​ * ​ ) ∈ , then let ϕ(​μ​l​) be any element z ∈ ​Z​ l​  such that ​w​ i​ (z) > ​w​ i​ (​μ​l​) for  
i = ​π​​μ​l​​ ( j ). Proceeding inductively by l, we get mapping ϕ.

We now construct an equilibrium that implements ϕ. In this equilibrium, continu-
ation payoff of player i if the current state is s and proposal q is accepted, ​V​ i​ (s, q), is 
given by (A5); and if no alternative is accepted, each player i receives ​V​ i​ (s, s). Given 
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these continuation payoffs, each period can be viewed as a finite (truncated) game 
with terminal payoffs given by ​V​ i​ (s, q). We construct an MPE σ′ of this truncated 
game by backward induction.

Case (i): ϕ(s) ≠ s. Given any current states s, consider the stage ​k​ s​ *​ defined above 
in the construction of mapping ϕ. If ​k​ s​ *​ is not the last stage, then for stages from ​K​s​ 
down to ​k​ s​ *​ + 1 we do the following. Suppose that in the last stage, the voting is over 
the alternative s′. Comparing payoffs as in the proof of part 1, we see that in an SPE, 
s′ must be accepted if and only if s′ = ϕ(s) and rejected otherwise. But by definition 
of ​Y​ s​ , s′ may be voted only if nominated by some player i. Proceeding backward to 
the agenda-setting stage, we notice that such player i must have ​w​ i​ (ϕ(s)) ≤ ​w​ i​ (s), 
and then he strictly prefers to stay in s, which means that nominating s′ = ϕ(s) is 
not his best action. By not nominating ϕ(s) if the game reached the last stage ​K​s​ he 
ensures that the next state is s. We can apply the same reasoning to all voting stages 
up to ​k​ s​ *​ + 1, and get an SPE in the subgame starting from stage ​k​ s​ *​ + 1 where no 
proposal is accepted and s is implemented.

Consider now stage ​k​ s​ *​. By the same reasoning, only ϕ(s) may be accepted if 
nominated. At this stage, it either happens automatically according to the protocol 
or, if ​π​s​(​k​ s​ *​) = i ∈ , then i ’s best response is to nominate ϕ(s): if i does not, then 
s persists for an extra period. Hence, in a subgame that starts at stage ​k​ s​ *​, there is a 
SPE where ϕ(s) is accepted.

If ​k​ s​ *​ ≠ 1, we proceed with backward induction. At stage ​k​ s​ *​ − 1, no proposal 
other than ϕ(s) may be accepted, and we can choose voting strategies such that ϕ(s) 
is rejected at this stage (it is later accepted at stage ​k​ s​ *​). If at this stage the agenda-
setter is some player i, he is indifferent, and we pick any action. Proceeding back-
ward, we finish constructing an SPE σ′ of this truncated game if the current state is 
s for the case ϕ(s) ≠ s.

Case (ii): ϕ(s) = s. Take the last voting stage, and suppose that some proposal 
s′ ≠ s is considered. For a player i to vote for s′, ​w​ i​ (ϕ(s′ )) > ​w​ i​ (s) must hold. Since 
ϕ(s) = s, however, such players do not form a winning coalition. Consequently, 
we can choose voting strategies so that a transition to another state will not be sup-
ported. Consequently, at the agenda-setting stage, any action may be chosen, as 
none of his proposals may be accepted. We can use backward induction to construct 
a strategy profile σ′ where no proposal is accepted.

Note that in both cases, we can choose σ′ to be Markovian by choosing the same 
actions in equivalent subgames for any player who is indifferent. Having done so 
for all s ∈ , we get a Markovian strategy profile σ. But given that in this strategy 
profile all transitions are one-stage, the payoffs are indeed given by (A5), and there-
fore there is no profitable one-shot deviation (otherwise, σ′ would not be an SPE for 
some s). This shows that σ is an MPE.

Our next step is to establish the properties that any MPE satisfies. Take any set of 
protocols ​{​π​s​ ( ⋅ )}​s∈​ and any pure-strategy MPE σ. For any state s, the proposal q 
that is accepted along the equilibrium path is well-defined (let q = s if all propos-
als are rejected) and define χ(s) = q. First, note that χ  :   →  has “no cycles”: 
if χ(s) ≠ s then for any n > 1, ​χ​ n​ (s) ≠ s (where ​χ​2​(s) ≡ χ(χ(s)), etc.). This can 
be established by contradiction. Suppose there exists n such that ​χ​n​(s) = s, but 
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χ(s) ≠ s. Denote by ​J​ s​ ⊂ {1, … , ​K​s​} the set of voting stages in state s where a pro-
posal ​P​ k​ made along the equilibrium path is accepted. By definition of χ, the first 
voting stage in ​J​ s​ leads to χ(s). Two cases are possible.

Case (i): for every k ∈ ​J​ s​ , ​χ​ n+1​(​P​ k​) ≠ ​χ​ n​(​P​ k​) for all n. Then consider the last vot-
ing stage k′ ∈ ​J​ s​ . If ​P​ ​k​ ′​​ is accepted, each player i receives ​​ ˜ w​​ i​ , and if ​P​ ​k​ ′​​ is rejected, i 
gets (1 − β) ​w​ i​ (s) + β ​​   w​​ i​ > ​​   w​​i​ . But ​P​ ​k​ ′​​ cannot be accepted in an MPE, yielding the 
desired contradiction.

Case (ii): for some k ∈ ​J​ s​ , ​χ​ n+1​(​P​ k​) = ​χ​ n​(​P​ k​) for some n. Denote the set of such k 
by ​J​ s​ ′ ​ ⊂ ​J​ s​; clearly, the first stage in ​J​ s​ is not in ​J​ s​ ′ ​ . Let k′ be the first stage in ​J​ s​ ′ ​; then ​
χ​ n+1​(​P​ ​k​ ′​​ ) = ​χ​ n​ (​P​ ​k​ ′​​ ) for all n ≥ |  | − 1. Consider the stage k″ in ​J​ s​ that precedes 
k′. Accepting the proposal made at k″, ​P​ ​k​ ″​​ , gives ​​ ˜ w​​ i​ to each player i, while rejecting 
it yields at least (1 − ​β​ |  |​ ) ​​   w​​ i​ + ​β​ |  |​ ​w​ i​ (​χ​ |  |​ (​P​ ​k​ ″​​ )) > ​​   w​​ i​. Therefore, proposal ​P​ ​k​ ″​​ 
cannot be accepted in any MPE, which yields a contradiction and establishes the 
“no cycle” result.

This “no cycle” result in turn implies that ​χ​ n​(s) = ​χ​ |  |−1​(s) for all n ≥ |  | − 1. 
Define ψ(s) = ​χ​ |  | −1​(s), and, with the convention that ​χ​0​(s) ≡ s,

(A6)	 m(s)  =  min {n  ∈  핅  ⋃  {0}  : ​ χ​ n​ (s)  =  ψ(s)} .

Evidently, 0 ≤ m(s) ≤ |  | − 1, and m(s) = 0 if and only if ψ(s) = χ(s) = s. 
Moreover,

(A7)	 ψ(ψ(s))  =  χ(ψ(s))  =  ψ(χ(s))  =  ψ(s) 

for any state s, as follows from the definition of mapping ψ. Finally, define

	 (1  −  β) ​w​ i​ (s)		  if χ(s)  =  s
(A8)	​​ 

_
 V​​ i​ (s)  =  {	 }  +  β ​w​ i​ (χ(s)) ,

	 (1  −  β) ​​   w​​ i​		  if χ(s)  ≠  s

which is the equilibrium payment of player i if the equilibrium proposal χ(s) is 
accepted, and, slightly abusing the notation, ​​ 

_
 V​​ i​ ,

	 (1  −  β) ​w​ i​ (s)	 if s  =  q
(A9)	​​ 

_
 V​​ i​ (s, q)  =  {	 }  +  β​​ 

_
 V​​ i​ (q) .

	 (1  −  β) ​​   w​​ i​	 if s  ≠  q

Clearly, ​​ 
_
 V​​ i​ (s, q) gives the continuation payoff of player i if in state s alternative q is 

accepted, and equilibrium play (according to σ) follows. We now prove an auxiliary 
result; then we will prove that ψ(s) satisfies Axioms 1 and 2, then that χ(s) = ψ(s) 
(which implies ​s​t​ = χ(​s​0​) for all t ≥ 1), and finally that ψ satisfies Axiom 3.

Proof that if proposals ​P​ ​k​j​​ and ​P​ ​k​l​​ , j < l, are proposed and accepted in state s, 
then ψ(​P​ ​k​j​​ ) ∼ ψ(​P​ ​k​l​​ ) and m(​P​ ​k​j​​ ) ≤ m(​P​ ​k​l​​ ). We only need to consider the case where 
χ(s) ≠ s, and thus, m(s) ≥ 1. For each state s take the set of voting stages J such 



1471Acemoglu et al .: Constitutions, Coalitions, and ClubsVOL. 102 NO. 4

that for each k ∈ J, the proposal ​P​ k​ is accepted. Let J = { ​k​1​, … , ​k​| J |​ }, where ​k​j​ < ​k​l​ 
for j < l (we drop index s for convenience); then J ≠ ∅. In equilibrium, proposal ​
P​ ​k​1​​ is accepted, so χ(s) = ​P​ ​k​1​​ and ψ(​P​ ​k​1​​) = ψ(s). Since each ​P​ ​k​l​​ for 1 ≤ l ≤ | J | is 
accepted in this equilibrium, then 1 ≤ l < | J |, ​​ 

_
 V​​ i​ (s, ​P​ ​k​l​​ ) ≥ ​​ 

_
 V​​ i​ (s, ​P​ ​k​l+1​​) for a winning 

coalition in s. For such players,

(A10)	 (1  − ​ β​ m(​P​​k​l​​ )+1​) ​​   w​​ i​  + ​ β​ m(​P​​k​l​​ )+1​​w​ i​ (ψ(​P​ ​k​l​​ ))

	 ≥  (1  − ​ β​ m(​P​​k​l+1​​)+1​) ​​   w​​ i​  + ​ β​ m(​P​​k​l+1​​)+1​​w​ i​ (ψ(​P​ ​k​l+1​​ )) ,

and therefore, from (A3), ​w​ i​ (ψ(​P​ ​k​l​​ )) ≥ ​w​ i​ (ψ(​P​ ​k​l+1​​ )); this implies ψ(​P​ ​k​l​​ ) ​⪰​s​ 
ψ(​P​ ​k​l+1​​ ). We also have that ​​ 

_
 V​​ i​ (s, ​P​ ​k​| J |​​ ) ≥ ​​ 

_
 V​​ i​ (s, s) for a winning coalition in s, and 

for such players,

(A11)	 (1  − ​ β​ m(​P​ ​k​ | J |​​ )+1​) ​​   w​​ i​  + ​ β​ m(​P​ ​k​| J |​​ )+1​​w​ i​ (ψ(​P​ ​k​| J |​​ ))

	 ≥  (1  −  β) ​w​ i​ (s)  +  β ((1  − ​ β​ m(s)​) ​​   w​​ i​  + ​ β​ m(s)​​w​ i​ (ψ(s)))

	 >  (1  − ​ β​ m(s)+1​) ​​   w​​ i​  + ​ β​ m(s)+1​​w​ i​ (ψ(s)) .

From (A3), we get ​w​ i​ (ψ(​P​ ​k​| J |​​ )) ≥ ​w​ i​ (ψ(s)) = ​w​ i​ (​P​ ​k​1​​ ); therefore, ψ(​P​ ​k​| J |​​) ​⪰​s​ ψ(​P​ ​k​1​​ ). 
Assumption 2(ii) now implies that ψ(​P​ ​k​j​​ ) ∼ ψ(​P​ ​k​l​​ ) for all 1 ≤ j < l ≤ | J |. Now 
(A10) implies that m(​P​ ​k​l​​ ) ≤ m(​P​ ​k​l+1​​ ) for all 1 ≤ l ≤ | J | − 1, which proves the aux-
iliary result.

Proof that ψ satisfies Axiom 1. Suppose ψ(s) ≠ s, so the auxiliary result applies. For 
a winning coalition of players in s, ​​ 

_
 V​​ i​ (s, ​P​ ​k​| J |​​) ≥ ​​ 

_
 V​​ i​ (s, s). The previous auxiliary result 

implies ψ(​P​ ​k​| J |​​) = ψ(s) and m(​P​ ​k​1​​) ≤ m(​P​ ​k​| J |​​ ) = m(s) − 1, and then the first inequal-
ity in (A11), together with (A3), implies ​w​ i​ (ψ(s)) > ​w​ i​ (s). We have thus proved 
that for any s ∈  such that ψ(s) ≠ s, ψ(s) ​≻​s​ s, and therefore Axiom 1 holds.

Proof that ψ satisfies Axiom 2 is straightforward as ψ(ψ(s)) = ψ(s) from (A7).
Proof that χ(s) = ψ(s). If ψ(s) = s, then χ(s) = s = ψ(s) due to the “no cycle” 

result. Let us prove that if ψ(s) ≠ s, then transition to state ψ(s) takes place in one 
step; i.e., that ψ(s)= χ(s) (or, equivalently, in (A6) m(s) = 1 whenever χ(s) ≠ s). 
Consider two cases.

Case (i): ψ(s) = ​P​ ​k​j​​ for some j  :  1 ≤ j ≤ | J |. In this case, m(​P​ ​k​j​​ ) = 0 since 
Axiom 2 is proven to hold. But we proved that m(​P​ ​k​l​​ ) is weakly increasing in l, 
therefore, m(χ(s)) = m(​P​ ​k​1​​ ) = 0, and therefore m(s) = 1.

Case (ii): ψ(s) = ​P​ ​k​j​​ does not hold for any j. This implies that m(​P​ ​k​1​​ ) ≥ 1 and 
ψ(s) ≠ χ(s). Suppose that at some stage k, the proposal ​P​ k​ = ψ(s) is made (not 
necessarily on the equilibrium path). Then if it accepted, each player i will get 
​​ 
_
 V​​ i​ (s, ​P​ k​) = (1 − β) ​​   w​​ i​ + β ​w​ i​ (ψ(s)), and if it is rejected, he will receive

	​​ 
_
 V​​ i​ (s, x)  ≤  (1  −  β ) ​w​ i​ (s)  +  β (1  −  β ) ​​   w​​ i​  + ​ β​ 2​ ​w​ i​ (ψ(s))
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for some x such that ψ(x) = ψ(s). Any player with ​w​ i​ (ψ(s)) > ​w​ i​ (s) must, given 
(A3), have ​​ 

_
 V​​ i​ (s, ​P​ k​) > ​​ 

_
 V​​ i​ (s, x). Since ψ(s) ​≻​s​ s (Axiom 1), proposal ​P​ k​ = ψ(s) will 

be accepted.
By Assumption 5, either every proposal will be made exogenously at some stage 

k, or each player will become an agenda-setter. In the first case, k ∈ J, but in the case 
under consideration ψ(s) = ​P​ ​k​j​​ does not hold for any j, yielding contradiction. In 
the second case, if a player i such that ​w​ i​ (ψ(s)) > ​w​ i​ (s) is the agenda-setter at 
stage k, then he cannot propose ​P​ k​ = ψ(s) in equilibrium, as it will be accepted, 
and we again get to a contradiction. Proposing ​P​ k​ = ψ(s), however, will yield 
​​ 
_
 V​​ i​ (s, ​P​ k​) whereas making the equilibrium proposal will yield ​​ 

_
 V​​ i​ (s, x). For player 

i, ​​ 
_
 V​​ i​ (s, ​P​ k​) > ​​ 

_
 V​​ i​ (s, x) as we proved earlier, thus he has a profitable deviation. This 

cannot happen in equilibrium, which proves that χ(s) = ψ(s) for all s ∈ .
Proof that ψ satisfies Axiom 3. Suppose that Axiom 3 does not hold. This implies 

that there exist states s, z ∈  such that ψ(z) = z, z ​≻​s​ s (which implies z ≠ s), and 
z ​≻​s​ ψ(s) (which implies ψ(z) ≁ ψ(s)). As before, suppose that at some stage k, the 
proposal ​P​ k​ = z is made (not necessarily on equilibrium path). If it is accepted, each 
player i will get ​​ 

_
 V​​ i​ (s, z) = (1 − β ) ​​   w​​ i​ + β ​w​ i​ (z), and if it is rejected, this player will get

	​​ 
_
 V​​ i​ (s, x)  ≤  (1  −  β ) ​w​ i​ (s)  +  β(1  −  β ) ​​   w​​ i​  + ​ β​ 2​ ​w​ i​ (ψ(s))

for some x such that ψ(x) = ψ(s). Now, (A4) implies that ​​ 
_
 V​​ i​ (s, z) > ​​ 

_
 V​​ i​ (s, x) when-

ever ​w​ i​ (z) > ​w​ i​ (ψ(s)); i.e., for a winning coalition in s. Therefore, proposal ​P​ k​ = z 
will be accepted.

Since ψ(z) ≁ ψ(s), it must be that z is never proposed along the equilibrium path. 
By Assumption 5, this is only possible if each player becomes the agenda-setter 
at some stage k. When a player with ​w​ i​ (z) > ​w​ i​ (ψ(s)) becomes the agenda-setter, 
proposing z is a profitable deviation for him. This cannot happen in equilibrium, and 
this contradiction establishes that ψ satisfies Axiom 3. This completes the proof of 
part 2 of the Theorem.

Part 3: This result immediately follows from Theorem 1 and part 2 of this 
Theorem.

Proof of Theorem 3:
Suppose, to obtain a contradiction, that stable state s ∈  is Pareto inefficient. 

This means that for some x ∈ , ​w​ i​ (x) > ​w​ i​ (s) for all i ∈ . By hypothesis, there 
is y ∈  such that ​​y​ ⊂ ​​s​ and ​w​ i​ (y) = ​w​ i​ (x) > ​w​ i​ (s) for all i ∈ . Take a map-
ping ϕ ∈ Φ. that satisfies Axioms 1–3. Consider two cases. If ϕ(y) = y, then from 
ϕ(s) = s and y ​≻​s​ s we get y ​≻​s​ ϕ(s), ϕ violates Axiom 3 (if there is z such that 
ϕ(y) = y, y ​≻​s​ s, and y ​≻​s​ z, then z ≠ ϕ(s)). If ϕ(y) ≠ y, then Axiom 1 implies ​
w​ i​ (ϕ( y)) > ​w​ i​ (y) > ​w​ i​ (s) for a winning coalition in y, which is a winning coalition 
in s, and thus ϕ(y) ​≻​s​ s and ϕ(y) ​≻​s​ ϕ(s). Axiom 2 guarantees that ϕ(ϕ( y)) = ϕ( y). 
Again, we conclude that ϕ violates Axiom 3.

Proof of Theorem 4:
The next lemma, proved in the online Appendix, characterizes properties of quasi-

median voters. Recall that ​M​s​ denotes the set of quasi-median voters in state s.
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Lemma 1: Given  ⊂ 핉,  ⊂ 핉, payoff functions ​{​w​ i​ (s)}​ i∈, s∈​ , and winning 
coalitions ​{​​s​}​s∈​ satisfying Assumption 1, the following are true.

	 (i)	 For each s, the set ​M​s​ is nonempty.

	 (ii)	 If the single-crossing property in Definition 3 holds, then for any states 
x, y, z ∈ ,

	 x ​≻​z​ y if and only if for all i ∈ Mz , ​ w​ i​ (x) > ​w​ i​ (y), and

	 x ​⪰​ z​ y if and only if for all i ∈ Mz , ​ w​ i​ (x) > ​w​ i​ (y).

	 (iii)	 If monotonic median voter condition in Definition 5 holds, then there is a 
nondecreasing sequence ​{​m​s​}​ s∈​ of players such that ​m​s​ ∈ Ms for all s ∈ .

Proof of Theorem 4: 

Part 1:  We start with Assumption 2(i). Suppose that there is a cycle ​s​1​, … , ​s​l​ 
such that ​s​k+1​ ​≻​​s​k​​ ​s​k​ for 1 ≤ k ≤ l − 1 and ​s​1​ ​≻​​s​l​​ ​s​l​ . Take a monotonic sequence 
of median voters ​{​m​s​}​s∈​ . Recall that ​m​s​ is part of any connected winning coalition 
in s, therefore, if for some x and z, x ​≻​z​ z, then ​w​ x​ (​m​z​ ) > ​w​ z​ (​m​z​). Now for each 
s ∈  consider an alternative set of winning coalitions where ​m​s​ is the dictator; 
i.e., ​​ s​ ′ ​ = {X ∈  : ms ∈ X }. Denoting the induced relation between states by 
≻′, we have that if x ​≻​z​ z, then x ​≻​ z​ ′ ​ z. Consequently, if there was a cycle ​s​1​, … , ​s​l​ 
such that ​s​k+1​ ​≻​​s​k​​ ​s​k​ for 1 ≤ k ≤ l − 1 and ​s​1​ ​≻​​s​l​​ ​s​l​ , then we have ​s​k+1​ ​≻​ ​s​k​​ ′ ​ ​s​k​ for 
1 ≤ k ≤ l − 1 and ​s​1​ ​≻​ ​s​l​​ ′ ​ ​s​l​ ; therefore, a cycle for ≻′ exists. Now take the shortest 
cycle for ≻′ (which need not be a cycle for ≻). Without loss of generality, suppose 
that ​s​2​ is the lowest state (so ​s​2​ ≤ ​s​1​ and ​s​2​ ≤ ​s​3​); then ​m​​s​2​​ ≤ ​m​​s​1​​ and ​m​​s​2​​ ≤ ​m​​s​3​​ . 
Since ​s​3​ ​≻​ ​s​2​​ ′ ​ ​s​2​ and ​s​2​ ​≻​ ​s​1​​ ′ ​ ​s​1​, we have ​w​ ​m​​s​2​​​ (​s​3​) > ​w​ ​m​​s​2​​​ (​s​2​) and ​w​ ​m​​s​1​​​ (​s​2​) > ​w​ ​m​​s​1​​​ (​s​1​). 
But ​s​2​ ≤ ​s​3​ and ​m​​s​2​​ ≤ ​m​​s​1​​ , hence, ​w​ ​m​​s​2​​​ (​s​3​) − ​w​ ​m​​s​2​​​ (​s​2​) > 0 implies ​w​ ​m​​s​1​​​ (​s​3​) − 
​w​ ​m​​s​1​​​ (​s​2​) > 0. Combining this with ​w​ ​m​​s​1​​​ (​s​2​) > ​w​ ​m​​s​1​​​(​s​1​), we conclude that ​w​ ​m​​s​1​​​ (​s​3​) > 
​w​ ​m​​s​1​​​ (​s​1​). But then ​s​3​ ​≻​ ​s​1​​ ′ ​ ​s​1​, since ​m​​s​1​​ is the dictator in ​s​1​. This implies that ​s​2​ may 
be skipped in the cycle, contradicting the assumption that ​{​s​k​}​ k=1​ l

  ​ is the shortest 
cycle.

To verify Assumption 2(ii), take any s ∈  and some ​m​s​ ∈ ​M​ s​ . Suppose there 
is a cycle ​s​1​, … , ​s​l​ such that ​s​k+1​ ​⪰​ s​ ​s​k​ for 1 ≤ k ≤ l − 1, ​s​1​ ​⪰​ s​ ​s​l​ , and ​s​j​ ≁ ​s​k​ for 
1 ≤ j < k ≤ l. Without loss of generality, assume that state ​s​l​ maximizes the pay-
off of ​m​s​ among states ​s​1​, … , ​s​l​ . Then ​w​ ​m​s​​ (​s​l​) ≥ ​w​ ​m​s​​ (​s​1​), and Assumption 6 implies ​
w​ ​m​s​​ (​s​l​) > ​w​ ​m​s​​ (​s​1​). But then, by Lemma 1, ​s​1​ ​⊁​ s​ ​s​l​ , and this contradicts the exis-
tence of a cycle. Finally, if x, y ∈  are such that x ​≻​s​ s and y ​≻​s​ x, then for any 
i ∈ Ms we have ​w​ i​ (y) > ​w​ i​ (x) > ​w​ i​ (s), which, in turn, implies y ​≻​s​ s. This shows 
that Assumption 2(ii) holds and completes the proof of part 1.24

24 This result can also be derived using Theorem 4.6 in Austin-Smith and Banks (1999).
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Part 2:25 Let  = ​∪​s∈​ ​​s​ ; then , as a set of winning coalitions, satis-
fies Assumption 1. Let ​≻​*​ be given by x ​≻​*​ y if and only if {i ∈  : ​w​ i​ (x) > ​
w​ i​ (y)} ∈ . Since preferences are single-peaked, Theorem 4.1 in Austen-Smith 
and Banks (1999) implies that ​≻​*​ is transitive, and hence acyclic. Clearly, a cycle 
in Assumption 2(i) would also be a cycle for ​≻​*​; given Assumption 6, so would a 
cycle in Assumption 2(ii). Hence, such cycles do not exist. Finally, Theorem 4.1 in 
Austen-Smith and Banks (1999) suggests that the preference relation ​≻​s​ is transi-
tive, and so x ​≻​s​ s and y ​≻​s​ x imply y ​≻​s​ s.

Proofs of Propositions in Section V

Proof of Proposition 1: 

Part 1: Since α > ​ 1 _ 2 ​ is the rule for all states, Assumption 1 is satisfied. Enumerate 
all states as ​s​1​, … ,  ​s​m​ (where m = |  | ) such that ​ρ​​s​k​​ is weakly increasing in k (the 
order of states with the same ρ may be arbitrary). With this order,  and  satisfy the 
single-crossing condition as in Definition 3. Indeed, if ​s​k​ < ​s​l​ and i < j, then

(​w​ j​ (​s​l​)  − ​ w​ j​ (​s​k​))  −  (​w​ i​ (​s​l​)  − ​ w​ i​ (​s​k​))

    =  (​v​ j​ (​ρ​​s​l​​)− ​ v​ j​ (​ρ​​s​k​​))  −  (​v​ i​ (​ρ​​s​l​​)  − ​ v​ i​ (​ρ​​s​k​​))  ≥  0,

because ​ρ​​s​k​​ ≤ ​ρ​​s​l​​ and v satisfies the strict increasing differences condition. Now 
construct a nondecreasing sequence of quasi-median voters; this would prove 
that monotonic median voter property holds. For state ​s​k​ , take ​m​​s​k​​ such that 
​​  ρ​​​m​​s​k​​​ ≤ ​ρ​​s​k​​ < ​​  ρ​​​m​​s​k​​+1​ if ​ρ​​s​k​​ < ​​  ρ​​n​, and let ​m​​s​k​​ = n otherwise. Then ​m​​s​k​​ is determined 
uniquely for each state ​s​k​, is weakly increasing, and is a quasi-median voter in state ​s​k​ by 
the assumption on feasible religious policies ρ. We can now apply part 1 of Theorem 4 
to show that Assumption 2 is satisfied and Theorem 1 and Theorem 2 apply.

Part 2: Suppose that some state s with 1, n ∉ Z(s) is stable. Suppose Z(s) = [a, b] 
and let Z ′ = [a − 1, b + 1]. Then min ​M​​Z​ ′​​ ≤ min ​M​Z​ ≤ max ​M​Z​ ≤ max ​M​​Z​ ′​​, and 
thus s′ = (​ρ​s​ , Z ′ ) is a feasible state. By the assumption on V (Z ), s′ Pareto dom-
inates s. Take a mapping ϕ that satisfies Axioms 1–3 and let x = ϕ(s′ ). Then 
Axiom 1 implies that ​w​ i​ (ϕ(s′ )) ≥ ​w​ i​ (s′ ) > ​w​ i​ (s) for a winning coalition in s′, 
and thus, by Lemma 1, for all i ∈ ​M​​s​ ′​​ . Therefore, this holds for all i ∈ ​M​s​ , and 
thus for a winning coalition in s. Since ϕ(ϕ(s′ )) = ϕ(s′ ), we get a violation of 
Axiom 3. This proves that s is not stable, and either 1 or n should be part of Z(s) 
for any stable state s. Hence, starting from any ​s​0​, at least one of these players will 
be given political participation.

25 We thank an anonymous referee for suggesting this simpler proof of part 2 of Theorem 4.
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Proof of proposition 2: 

Part 1: Notice that any state x with Z(x) =  is stable, as any ϕ with ϕ(x) ≠ x 
would violate Axiom 1. Indeed, since ​​  ρ​​ min ​M​​​ ≤ ρx ≤ ​​  ρ​​ max ​M​​​ and preferences are 
single-peaked, quasi-median voter min ​M​​ would be worse off from any state y with 
ρy > ρx  , and max ​M​​ would be worse off if ρy < ρx  . Now suppose, to obtain a 
contradiction, that for some s such that Z(s) ≠ , ϕ(s) = s. Consider the following 
cases. Case (i): ρ(s) < ​​  ρ​​min ​M​​​ . Take x = (​​  ρ​​min ​M​​​ ,  ); by hypothesis, ​w​ 1​(x) > ​w​ 1​(s), 
and thus

	​ w​ 1​(x)  = ​ v​1​(​​  ρ​​min ​M​​​)  +  V ( )  > ​ v​1​(​​  ρ​​1​)  +  V (s)  ≥ ​ v​1​(s)  +  V (s)  = ​ w​ i​ (s) .

Since ρ(x) > ρ(s), this implies ​w​ i​ (x) > ​w​ i​ (s) for all i ∈ . But we proved that x is 
stable, and then ϕ(s) = s violates Axiom 3. Case (ii): ​​  ρ​ ​min ​M​​​ ≤ ρs ≤ ​​  ρ​​ max ​M​​​ . Take 
x = (ρs ,  ) and notice that ​w​ i​ (x) > ​w​ i​ (s) for all i ∈ . Since we earlier proved that 
ϕ(x) = x, we immediately get a contradiction to Axiom 3. Case (iii): ρs > ​​  ρ​​ max ​M​​​ . 
This case is completely analogous to case (i). In all cases, ϕ(s) = s leads to a 
contradiction.

Part 2: Let k = 1. Let state s be such that Z(s) ≤ k and Z(s) includes the middle 
player. Denote the player in Z(s) by i and take x = (​​  ρ​​i​ ,  ), which is feasible for 
any α. Then ϕ(x) = x as proved earlier. If ϕ(s) ≠ x, then Axiom 3 is violated, as ​
w​ i​ (x) > ​w​ i​ (y) for any state y ≠ x. This proves that ϕ(s) = x.

If s includes either player 1 or player n and Z(s) ≤ k, then either s = (​​  ρ​​1​, {1}) 
or s = (​​  ρ​​n​ , {n}). Suppose that ϕ(s) = x = (ρ,  ); then ​​  ρ​​ min ​M​​​ ≤ ρ ≤ ​​  ρ​​ max ​M​​​ , and 
​v​1​(ρ) ≤ ​v​1​(​​  ρ​​ min ​M​​​) and ​v​n​(ρ) ≤ ​v​1​(​​  ρ​​ max ​M​​​ ) by single-peakedness. Then in the first case,

	​w​ 1​(x)  = ​ v​1​(ρ)  +  V ( )  ≤ ​ v​1​(​​  ρ​​ min ​M​​​ )  +  V ( )  < ​ v​1​(​​  ρ​​1​)  +  V ({1})  = ​ w​ 1​(s) ,

and thus Axiom 1 is violated. Similarly, in the latter case, ​w​ n​ (x) < ​w​ 1​(s), and Axiom 1 
is again violated. This proves that ϕ(s) ≠ x.

Part 3: Take some s; suppose, to obtain a contradiction, that ϕ(s) = x such that 
Z(x) ≠ . By Axiom 1, ​w​ i​ (x) > ​w​ i​ (s) for all i ∈ . Consider y = (ρx ,  ); the una-
nimity rule ensures that y is feasible for any ρ(x). As shown earlier, ϕ(y) = y, and ​
w​ i​ (y) > ​w​ i​ (x) > ​w​ i​ (s) for every player i ∈ . But then ϕ(s) = x violates Axiom 3, 
a contradiction.

Proof of proposition 3: 

Part 1: The proof follows that of part 1 of Proposition 1.

Part 2: Suppose, to obtain a contradiction, that for some s, ϕ(s) = x such that 
Z(x) ≠  for a mapping ϕ that satisfies Axioms 1 – 3. By Axiom 1, ​w​ i​ (x) > ​w​ i​ (s) for 
a winning coalition in s. Consider y = (α′, ρx ,  ) such that α′ > ​ n − 1

 _ n  ​ ; then y is fea-
sible. But ϕ(y) = y, and ​w​ i​ (y) > ​w​ i​ (x) for every player i ∈ . Then ​w​ i​ (y) > ​w​ i​ (s) 
for a winning coalition in x. But then ϕ(s) = x violates Axiom 3, a contradiction.
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